# Lab Report on Ideal Gas Law

Topics: Gas, Pressure, Gas laws Pages: 3 (1033 words) Published: March 9, 2006
Ideal Gas Law Lab
1. Procedure: First, we used a balance to weigh the canister of gas, and recorded that mass as the original weight. Then, we filled a large bucket with water and recorded the temperature. We then filled a small test tube with water at the same temperature and poured that water into a graduated cylinder to measure the original volume of water in the tube. We then poured the water back into the test tube and placed the tube into the bucket with the opening upwards, turning the open end downwards after the tube was fully submerged beneath the surface. We then placed the canister directly below the opening of the test tube, and released the gas so that the bubbles rose into the test tube. Next, we used a cork whose head was larger than the opening of the test tube to block off the opening (without changing the pressure inside of the tube), so that we could transport the remaining water to a graduated cylinder. When doing this, it was very important that the water level inside of the tube was equal to that of the surrounding water in the bucket, because that ensured that since the water pressure in the tube was the same as that of the surrounding water, the pressure of the gas would be the same as that of the surrounding air. Thus, we recorded the gas pressure to be the same as the pressure in the room, which was calculated to be 763.0 mmHg.

We poured the remaining water from the test tube into a graduated cylinder to calculate the difference between the original water volume and the volume remaining, because this difference was equal to the volume of the gas released.

Next, we blow-dried and shook the canister to get rid the extra mass that would have been added by any water that had clung onto it while it was in the bucket, and weighed the canister again. We subtracted this mass from the original mass of the canister to find out the mass of gas released.

Now that we had collected our data, we used Dalton's law of partial pressures to...