Case Study on Future Scope of Nanorobotics in Medical Field

Only available on StudyMode
  • Download(s) : 1918
  • Published : October 11, 2010
Open Document
Text Preview
2 3 Keshav kumar EE Pawan Garg EC, Prince kumar Teli E 1 2 3, Institute of Technology &Management, Bhilwara 1

ABSTRACT Nanorobotics, just as with all nanotechnology is still in very early stages of development and as such is largely based within electronic engineering and physics and concerns micromachining, microelectromechanical systems (MEMS)and Scanning Probe Microscopy methods. Research into any particular method for creation of nanorobots will largely depend on the group carrying out the research rather than the subject within which they are based. For instance, IBM research (gives an idea of the diversity of research within the computer based industry, Nanorobots can provide enormous impact for the development and implementation of advanced biomedical instrumentation with remarkable improvement to common clinical practice. It offers a cutting edge technology for diagnosis, drug delivery, laparoscopic nanosurgery, and health care, with therapeutic applications for cancer, diabetes, brain aneurysm, contagious diseases, and cardiology. Nanorobotics is the technology of creating machines or robots at or close to the scale of a nanometer (10-9 meters).Nanorobots (nanobots or nanoids) are typically devices ranging in size from 0.1-10 micrometers and constructed of nanoscale or molecular components... INTRODUCTION Precise control of the structure of matter a nanometer scale will have revolutionary implications for science and technology. Nanoelectromechanical systems (NEMS) will be extremely small and fast, and have applications that range from cell repair to

ultra strong materials to human internal fluids. This paper describes the first steps towards the construction of NEMS by assembling nanometer-scale objects using a Scanning Probe Microscope as a robot. This paper also describes different motions and mechanisms during the working of the Nanorobots. Our research takes an interdisciplinary approach that combines knowledge of macro robotics and computer science with the chemistry and physics of phenomena at the nanoscale. Nanorobotics is an emerging field that deals with the controlled manipulation of objects with nanometerscale dimensions. Typically, an atom has a diameter of a few Ã…ngstroms (1 Ã… = 0.1 nm = 10-10 m), a molecule's size is a few nm, and clusters or nanoparticles formed by hundreds or thousands of atoms have sizes of tens of nm. Therefore, Nanorobotics is concerned with interactions with atomic- and molecular-sized objects-and is sometimes called Molecular Robotics. We use these two expressions, plus Nanomanipulation, as synonyms in this article. Another definition sometimes used is a robot which allows precision interactions with nanoscale objects, or can manipulate with nanoscale resolution. Nanomachines are largely in the research-and-development phase, but some primitive molecular machines have been tested. An example is a sensor having a switch approximately 1.5 nanometers across, capable of counting specific molecules in a chemical sample APPLICATIONS Potential applications for nanorobotics in

medicine include early diagnosis and targeted drug delivery for cancer, biomedical instrumentation, surgery, pharmacokinetics, monitoring of diabetes, and health care. Molecular Robots Molecular Robots is another term sometimes used for Nanorobotics. Nanorobotics is the technology of creating machines or robots at or close to the microscopic scale of a nanometer. More specifically, nanorobotic refers to the still largely hypothetical nanotechnology engineering discipline of designing and building nanorobots, constructed of nanoscale or molecular components. As no artificial nonbiological nanorobots have yet been created, they remain a hypothetical concept. Another definition sometimes used is a robot which allows precision interactions with nanoscale objects, or...
tracking img