The Transition from Computer Aided Design to Building Information Modeling Within the Arcitecture, Engineering, & Construction Industry

Only available on StudyMode
  • Topic: Building Information Modeling, Computer-aided design, Industry Foundation Classes
  • Pages : 15 (4865 words )
  • Download(s) : 40
  • Published : November 3, 2008
Open Document
Text Preview

SUMMARY: Building Information Modeling (BIM) is defined by the U.S. General Services Association as “the development and use of a multi-faceted computer software data model to not only document a building design, but also to simulate the construction and operation of a new capital facility or a recapitalized (modernized) facility. The resulting Building Information Model is a data-rich, object-based, intelligent and parametric digital representation of the facility, from which views appropriate to various users’ needs can be extracted and analyzed to generate feedback and improvement of the facility design” [1] A building information model creates and manages changes to digital databases that capture and preserve building information for design, analysis, and simulation. Despite its inception all the way back in the 1970s [2], BIM is only beginning to be embraced by the Architecture, Engineering, and Construction (AEC) industry. This slow embrace can be attributed to the various barriers to entry BIM solutions have faced. These obstacles include, but are not limited to, previous problems of supporting software platforms, the lack of standards, and issues of interoperability.

The purpose of this paper is to provide the reader with a clear background on the origins and characteristics of BIM, as well as its benefits. In addition, this paper will offer insights into the technologies that make BIM possible, examples of BIM in use, and an outlook on its future. It is the author’s intention that readers of this paper (particularly those in the AEC industry) will be able to walk away with a better idea of how BIM might be integrated into their own building design processes.


1.1 Background

With the incredible technological advancements over the course of the last several decades, the Architecture, Engineering, and Construction (AEC) industry has undergone revolutionary changes. Traditionally, all documents involved in any part of the building process have been paper-based and generated by hand. Therefore, these work products are much more prone to human error and inconsistencies. Moreover, if there are revisions, changes, checks to be made, all work must be redone by hand, because the entire building process is an iterative process. At each phase of the process—pre-design, design, post-design, building/construction—new building documents must be created, making the entire process much more laborious. Far too much time was wasted just producing building documents, instead of spending more time on making better designs. Just as the manufacturing and service sectors have put technology to use, so has the AEC industry, becoming increasingly automated with the introduction and use of computer and software technology in the building process.

1.2 Problem Setting and Scope (not complete)

The AEC industry has faced many challenges in fully embracing and integrating IT solutions into the design, construction, and management of buildings and facilities. Computer Aided Design, or CAD, was the first step towards automating and digitizing the building process. This provided a means to encapsulating value-adding information to drawings through the CAD files’ layer, line-type, and block structures. This encapsulation process has proven to be costly and time-consuming, resulting in the use of CAD to being limited to modeling building drawings rather than the buildings themselves. As such, CAD drawings have limited ability to share and exchange building information as it changes throughout the design process.

This paper draws from a variety of academic, professional/trade, and popular sources, as well as the author’s own personal work experience using CAD in a professional, structural engineering setting. Its purpose is to provide laypeople,...
tracking img