Preview

Drosophila Melanogaster - Sex Linkage and Inheritance of Genes Through Cross Breeding

Better Essays
Open Document
Open Document
1287 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Drosophila Melanogaster - Sex Linkage and Inheritance of Genes Through Cross Breeding
Drosophila melanogaster - Sex linkage and inheritance of genes through cross breeding

Abstract
This experiment looks at the relationship between genes, generations of a population and if genes are carried from one generation to another. By studying Drosophila melanogaster, starting with a parent group we crossed a variety of flies and observe the characteristics of the F1 generation. We then concluded that sex-linked genes and autosomal genes could indeed be traced through from the parent generation to the F1 generation.
Introduction
Sex linkage and inherited genes allow us to predict and understand how and why certain animals and plants inherit features from their parents while some don’t. Sex linkage is the condition in which a gene responsible for a specific trait is located on a sex chromosome, resulting in sexually dependent inheritance of the trait (Houghton Mifflin Company 2009). As the first sex-linked gene was found in Drosophila melanogaster (Ladiges, Pauline Y 2012) it is appropriate to use them in the study to determine how sex-linked chromosomes effect the offspring. By crossing the male and female Drosophila with different traits we observed the F1 generation and how sex-linked chromosomes were carried into the F1 generation as well as autosomal or inherited genes (Miko, I. 2008). The traits we looked at were the eye colour for sex-linked genes and vestigial wings for the autosomal genes.
Materials and method
Firstly we paired off into groups of two and each group received two small plastic vials containing Drosophila melanogaster, one containing only males with the vestigial wing gene (Vg) and the other vial containing only females with the white eye gene (W). Alternate groups were given the opposite pairing (Vg females and W males). The vials had approx. 1cm of white media for the flies to use as food and to lay their eggs in and a foam stopper at the top as to not restrict air flow.
We then had to decant the flies into one vial by first



References: Houghton Mifflin Company. (2009). Sex linkage definition. Available: http://www.thefreedictionary.com/sex+linkage. Last accessed 15/03/203. Ladiges, Pauline Y (2012). Biology - An Australian Focus. 4th ed. Australia: McGraw-Hill. 198. Miko, I. (2008) Thomas Hunt Morgan and sex linkage. Nature Education 1(1) Helmbold, J

You May Also Find These Documents Helpful

  • Good Essays

    In this experiment, Drosophila melanogaster, Drosophila virilis, as well as a marker strain (mutant strain of D. melanogaster) were used to examine the genetic variation. Electrophoresis followed by the staining of the proteins will cause the enzymes, aldehyde oxidase, alcohol dehydrogenase, and malate dehydrogenase, to become visible, appearing as a set of different banding patterns. The banding patterns will dependent on the molecular form of the enzyme, indicating the genetic variation that can exist between strains (Biology Department, 2014).…

    • 1385 Words
    • 4 Pages
    Good Essays
  • Good Essays

    In addition to wild-type flies, 29 different mutations of the common fruit fly, Drosophila melanogaster, are included in FlyLab. The 29 mutations are actual known mutations in Drosophila. These mutations create phenotypic changes in bristle shape, body color, antennae shape, eye color, eye shape, wing size, wing shape, wing vein structure, and wing angle. For the purposes of the simulation, genetic inheritance in FlyLab follows Mendelian principles of complete dominance. Examples of incomplete dominance are not demonstrated with this simulation. A table of the mutant phenotypes available in FlyLab can be viewed by clicking on the Genetic Abbreviations tab which appears at the top of the FlyLab homepage. When you select a particular phenotype, you are not provided with any information about the dominance or recessiveness of each mutation. FlyLab will select a fly that is homozygous for the particular mutation that you choose, unless a mutation is lethal in the homozygous condition in which case the fly chosen will be heterozygous. Two of your challenges will be to determine the zygosity of each fly in your cross and to determine the effects of each allele by analyzing the offspring from your…

    • 862 Words
    • 4 Pages
    Good Essays
  • Satisfactory Essays

    25.) When Thomas Hunt Morgan crossed his red-eyed F1 generation flies to each other, the F2 generation included both red and white-eyed flies. Remarkably, all the white-eyed flies were male. What was the explanation for this result?…

    • 495 Words
    • 1 Page
    Satisfactory Essays
  • Good Essays

    Fruit Fly Lab Report

    • 1286 Words
    • 6 Pages

    The goal of the Drosophila melanogaster lab was to breed homozygous wild-type Drosophila melanogaster with homozygous mutant Drosophila…

    • 1286 Words
    • 6 Pages
    Good Essays
  • Satisfactory Essays

    1. In fruit flies, long wings are dominant to short wings. Complete a cross between a short winged male and a heterozygous female.…

    • 337 Words
    • 2 Pages
    Satisfactory Essays
  • Better Essays

    Genes are traits that give living things their own certain characteristic. Genes are inherited from the P generation to the F1 generation. As genes are passed down, they are given traits that are either contain all dominant genes known as homozygous dominant, or both dominant and recessive also known as heterozygous and last is homozygous recessive, meaning that the genes are both recessive. Dominant alleles are always present even if they also contain one recessive and the only way to express the recessive trait, both alleles must be recessive for the trait to be expressed. During sexual reproduction, 2 parents with different traits are crossbreed, which encourage cultural diversity out of the population. The offspring of the P1 generation is also call the hybrid since they have a mixed of traits from both parents. There are 2 type of crossbreeding first is…

    • 2413 Words
    • 10 Pages
    Better Essays
  • Better Essays

    Fruit Fly Lab Report

    • 1270 Words
    • 6 Pages

    The fruit fly or Drosophila melanogaster is ideal for classroom experiments. They are inexpensive, easy to nap, breed, as well as observe. It was very important to be able to tell the male and female flies apart from one another. The males are known to be usually smaller in size than the female flies and have bristles on their forelegs while the females lack this appearance. Also the males have a black or dark round end whereas the females have striped pointy ends. The Drosophila flies are small have dark red eyes and have a yellow-brown body. These flies are able to mutate within approximately ten to fourteen days at twenty-five degrees Celsius. The Drosophila has a…

    • 1270 Words
    • 6 Pages
    Better Essays
  • Good Essays

    Fruit Fly Lab Report

    • 602 Words
    • 3 Pages

    In this lab a study of fruit fly genetics was done these creature are readily used for genetic studies .they are easy to maintain. And the females lay a lot off eggs which develop in about two weeks. Fruit fly’s have for distinct stages, the egg, larva, pupa and adult. the egg and larva stages last for eight days, the pupal stage last for six days and then the adult stage which last for many weeks this period of growth is called instars. In this lab a dihybrid cross was performed to get data results and to draw a conclusion to the hypothesis.…

    • 602 Words
    • 3 Pages
    Good Essays
  • Good Essays

    In the reciprocal cross, the behavioural phenotypes were isolated from one another while the wing veins were kept constant (in this case both wild type). When the wild type mellow female Drosophila and wild type hyper male Drosophila were crossed, all female offspring obtained a similar phenotype to that of the male parental while all the male offspring had phenotypical combinations similar to that of the female parent. This set of results shows that the mellow behavioral phenotype is a recessive x-linked gene carried by the female because the resulting male offspring showed the same characteristics to that of the female parent (received X – chromosome from female parent). On an additional note, there was a higher frequency of females in comparison to men; 121 and 105 respectively. In addition, the behavioral gene is sex -linked also because of the different resulting phenotypical ratio in comparison to the cross carried out in vial one.…

    • 771 Words
    • 4 Pages
    Good Essays
  • Good Essays

    Apterous Fly Hypothesis

    • 1002 Words
    • 5 Pages

    Apterous flies have no wings, and are a recessive gene, while wild flies have wings and are a dominant gene, (TT,Tt). A punnett square can be used to cross a recessive (apterous fly, tt) and a dominant gene (wild fly, TT, Tt).…

    • 1002 Words
    • 5 Pages
    Good Essays
  • Good Essays

    They thought Mendel’s hereditary determinants were on a locus. They found out that the physical separation of alleles during anaphase I of meiosis accounts for Mendel’s principle of segregation. If the alleles for different genes are located on different chromosomes, they assort independently from one another in meiosis I. This confirmed the principle of independent assortment. Later on, the two scientists came up with the chromosome theory of inheritance, which states that independent assortment happens in metaphase and anaphase of meiosis I. To test the theory of inheritance, scientist Thomas Hunt Morgan used the fruit fly. At one point, Morgan noticed that a male fruit fly had white eyes rather than the wild type red eyes. He concluded that the white eyes resulted from a mutation. He mated a red-eyed female with a mutant white-eyed male and the results showed that all of the F_1 females had red eyes, but the F_1 males had white eyes. This was very peculiar because Mendel already proved that traits are not sex based. Morgan realized that the X chromosome in males and females explained his results. He determined that eye color is carried on the X chromosome and not on the Y chromosome. This is described as sex-linked inheritance. According to the X-linkage hypothesis, a female has two copies of the eye color gene because they have the two X chromosomes, whereas the male fruit flies have the one X chromosome that codes for eye color. The reciprocal cross of pea plants happened on non-sex chromosomes called autosomes. Genes on non-sex chromosomes show autosomal inheritance. Biologists now know that Boveri’s and Sutton's chromosome theory of inheritance was…

    • 600 Words
    • 3 Pages
    Good Essays
  • Good Essays

    The X/Y sex chromosomes and the 2,3,4, autosomes. It is important to know the differences between the two adult sexes in order to record and collect the data accurately. The major sexual differences in Drosophila are apparent in the abdominal segment of the flies. In males, the last abdominal segment of the male is much larger and rounded than that in the female. Another indicator is the presence of sex combs present in males. Male flies has a small, densely packed bristles call sex comb on the outer joints of both forelegs. Females lack sex combs. Therefore, if one sees sex combs on a fly, it is certain that the fly is a male. Female fruit flies remain virgins for approximately six hours after hatching but will mate after the six hour window. It is important for the female flies to be virgin, so one knows which fly genotypes are…

    • 1224 Words
    • 5 Pages
    Good Essays
  • Better Essays

    Fruit Fly Lab Report

    • 1348 Words
    • 6 Pages

    Looking at all of the fruit flies, there is no possible way for the parent flies to be homozygous. If the parent flies were homozygous, both the F1 and the F2 phenotypes would be the same holding a 1:1ratio, instead of the 9:3:3:1 ratio that was observed. The purpose of this experiment was to determine the F1 genotype of fruit fly traits using the phenotypic ratio of the F2 generation and to express these results of the unknown cross through a Chi-square model. After taking data with the Chi-squared value of 5.64, the degrees of freedom were 3 and the p-value was between .05 and .2, it is confident to fail to reject the null hypothesis, which leads the experimenters to believe that the observed phenotypic ratio does significantly deviate from that expected under the assumption of Mendelian inheritance. In the future, exploring more complex animals other than fruit flies, such as mammals or reptiles, would make this experiment a little more difficult, but more interesting as well. Without Mendelian genetics, it would be much more difficult to predict traits in organisms across the living…

    • 1348 Words
    • 6 Pages
    Better Essays
  • Powerful Essays

    Fruit Fly Lab Report

    • 1490 Words
    • 6 Pages

    Drosophila melanogaster is a common fruit fly that has been useful for most experiments in the study of Genetics. The male and the female fruit fly are similar and different in regards to how they look, structurally. They are similar because both genders have a head, thorax, proboscis, antennae, eyes, and mouth parts. However, males are smaller than females and have about five abdominal segments as opposed to the seven that the female has. The life cycle of these fruit flies consist of egg, larvae, metamorphosis, and then adult stages. During the egg stage of their life cycle, the eggs are sunk into the food until they become larvae that spend all of their time eating. After, the larvae go through two molting phases called instars,…

    • 1490 Words
    • 6 Pages
    Powerful Essays
  • Good Essays

    genetics notes

    • 398 Words
    • 2 Pages

    Study of how the inheritance of traits encoded by genes on sex chromosomes (sex-linked traits)…

    • 398 Words
    • 2 Pages
    Good Essays

Related Topics