Preview

Citric Acid Cycle

Better Essays
Open Document
Open Document
1739 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Citric Acid Cycle
Citric acid cycle
From Wikipedia, the free encyclopedia
Jump to: navigation, search
[pic]
[pic]
Overview of the citric acid cycle
The citric acid cycle — also known as the tricarboxylic acid cycle (TCA cycle), the Krebs cycle, or the Szent-Györgyi-Krebs cycle, [1][2] — is a series of enzyme-catalysed chemical reactions, which is of central importance in all living cells that use oxygen as part of cellular respiration. In eukaryotic cells, the citric acid cycle occurs in the matrix of the mitochondrion. The components and reactions of the citric acid cycle were established by seminal work from Albert Szent-Györgyi and Hans Krebs.
In aerobic organisms, the citric acid cycle is part of a metabolic pathway involved in the chemical conversion of carbohydrates, fats and proteins into carbon dioxide and water to generate a form of usable energy. Other relevant reactions in the pathway include those in glycolysis and pyruvate oxidation before the citric acid cycle, and oxidative phosphorylation after it. In addition, it provides precursors for many compounds including some amino acids and is therefore functional even in cells performing fermentation.
|Contents |
|[hide] |
|1 A simplified view of the process |
|2 Steps |
|3 Products |
|4 Regulation |
|5 Major metabolic pathways converging on the TCA cycle |
|6 Interactive pathway map |
|7 See also |
|8 Notes

You May Also Find These Documents Helpful

  • Satisfactory Essays

    Biology Summary Guide 7.2

    • 497 Words
    • 2 Pages

    2. In the first of the Krebs Cycle, a two-carbon molecule of acetyl CoA combines with a four-carbon compound, oxaloacetic acid to produce citric acid.…

    • 497 Words
    • 2 Pages
    Satisfactory Essays
  • Good Essays

    Krebs Cycle Lab Report

    • 297 Words
    • 2 Pages

    he Krebs Cycle also expressed as: CH3C(=O)C(=O)O− (pyruvate) + HSCoA + NAD+ → CH3C(=O)SCoA (acetyl-CoA) + NADH + CO2 is the main pathway in all aerobic organisms. Basically it’s the way that cells produce energy for itself, but the only issue is it requires the presence of oxygen. In total eight reactions that take place in the mitochondria, and these reactions result in two carbon molecules and oxidizes it into carbon dioxide. Step 1 Citrate synthase bridges to Oxaloacetate substrates which can then bind to Acetyl–CoA’s acetyl group, which drops off the A Co-enzyme. This in turn created citrates for usage later in the Krebs cycle. This six-carbon molecule will be degraded, and biotransformed back into Oxaloacetate.Step 2The citrate isn't…

    • 297 Words
    • 2 Pages
    Good Essays
  • Good Essays

    SCI/230 Cell worksheet

    • 885 Words
    • 4 Pages

    What is the role of the citric acid cycle? Include the reactants and the products. Where does it occur?…

    • 885 Words
    • 4 Pages
    Good Essays
  • Satisfactory Essays

    9.3 After pyruvate is oxidized, the citric acid cycle completes the energy-yielding oxidation of organic molecules…

    • 1458 Words
    • 6 Pages
    Satisfactory Essays
  • Powerful Essays

    A. The Krebs Cycle - What is it? The second stage of cellular respiration that occurs if oxygen is present…

    • 837 Words
    • 4 Pages
    Powerful Essays
  • Good Essays

    During the Krebs cycle: the products of glycolysis are further broken down, generating additional ATP and the high-energy electron carrier NADH…

    • 500 Words
    • 2 Pages
    Good Essays
  • Good Essays

    Stage two the citric acid cycle. The two molecules of pyruvic acid that fuel the remains after glycolysis are not ready yet. The pyruvic acid must be converted to a form the citric acid cycle can use. First each pyruvic acid loses a carbon as CO2. The remaining fuel molecules each with 2 carbons left are called acetic. The oxidation of the fuel generates NADH. Lastly each acetic acid is attached to a molecule called coenzyme A (CoA), an enzyme from the formed from the B vitamin pantothenic acid to form acetyl CoA. The CoA escorts the acetic acid into the first reaction of the citric acid cycle. The CoA is then stripped and recycled.…

    • 398 Words
    • 2 Pages
    Good Essays
  • Satisfactory Essays

    Bio Exam 1

    • 2676 Words
    • 36 Pages

    Identify the step in which Kreb’s or Citric Acid Cycle would most appropiately fit in aerobic cellular respiration.…

    • 2676 Words
    • 36 Pages
    Satisfactory Essays
  • Good Essays

    The Citric Acid Cycle is a series of enzyme-catalysed reactions that take place in the mitochondrial matrix of all aerobic organisms. It involves the oxidation of the acetyl group of acetyl CoA to two molecules of carbon dioxide. Each cycle produces one molecule of ATP by substrate-level phosphorylation, and reduces three molecules of NAD and one molecule of FAD for use in Oxidative Phosphorylation. The cycle is preceded by Glycolysis, which also occurs in anaerobic respiration, and the pyruvate dehydrogenase complex, which occur in the cytoplasm and the mitochondrial matrix respectively. In aerobic respiration, glycolysis breaks down one molecule of glucose and two molecules of pyruvate, and gives a net product…

    • 1383 Words
    • 6 Pages
    Good Essays
  • Good Essays

    3) Krebs cycle- the introduction of acetyl co-enzyme A into a cycle of oxidation-reduction reactions that yield some ATP and a large number of electrons.…

    • 1000 Words
    • 4 Pages
    Good Essays
  • Better Essays

    Biochemistry-Metabolism

    • 1252 Words
    • 6 Pages

    the citric acid or Krebs cycle and 3) electron transport system. The glycolytic pathway or…

    • 1252 Words
    • 6 Pages
    Better Essays
  • Good Essays

    Cell Work Sheet

    • 850 Words
    • 4 Pages

    • What is the role of the citric acid cycle? Include the reactants and the products. Where does it occur?…

    • 850 Words
    • 4 Pages
    Good Essays
  • Powerful Essays

    Unit two Biology

    • 7492 Words
    • 30 Pages

    In and takes place inATP cytoplasm.are used glucose this process, two molecules and four produced. Reduced NAD is also formed. take place, and the • When oxygen is available, aerobic respiration canto acetyl CoA inthe pyruvate is moved intoacetyl matrix of a mitochondrion where it is converted the link reaction. The 2C CoA combines with the 4C compound oxaloacetate and enters the Krebs cycle.…

    • 7492 Words
    • 30 Pages
    Powerful Essays
  • Powerful Essays

    Cellular respiration is an ATP-producing catabolic process in which the electron receiver is an inorganic molecule. It is the release of energy from organic compounds by chemical oxidation in the mitochondria within each cell. Carbohydrates, proteins, and fats can all be metabolized, but cellular respiration usually involves glucose: C6H12O6 + 6O2 → 6CO2 + 6H2O + 686 Kcal of energy/mole of glucose oxidized. Cellular respiration involves glycolysis, the Krebs cycle, and the electron transport chain. Glycolysis is a catabolic pathway that occurs in the cytosol and partially oxidizes glucose into two pyruvate (3-C). The Krebs cycle occurs in the mitochondria and breaks down a pyruvate (Acetyl-CoA) into carbon dioxide. These two cycles both produce a small amount of ATP by substrate-level phosphorylation and NADH by transferring electrons from substrate to NAD+. The Krebs cycle also produces FADH2 by transferring electrons to FAD. The electron transport chain is located at the inner membrane of the mitochondria and accepts energized electrons from enzymes that are collected during glycolysis and the Krebs cycle, and…

    • 1687 Words
    • 7 Pages
    Powerful Essays
  • Better Essays

    Cellular respiration includes the processes of glycolysis, krebs cycle, and the electron transport chain. Glycolysis is used to convert glucose to produce two pyruvate as well as 4 ATP’s and 2 NADH but uses 2 ATP to have a net product of 2 ATP and 2 NADH. The krebs cycle converts pyruvate to Acetyl CoA, which produces 2 ATP,8 NADH, and 2 FADH’s per glucose molecule. Electron transport Chain is the last and most important step of cellular respiration, it makes ATP with the movement of electrons from high energy to low energy that makes a proton gradient which makes ATP, this cannot occur unless oxygen is present. Fermentation is an anaerobic process in which converts sugars into acids, alcohol, or alcohol. This process occurs in yeast and bacteria as well as muscle cells that have no oxygen left. In yeast fermentation produces ethyl alcohol and carbon dioxide from glucose and fructose. Fermentation in bacteria cells the process of fermentation produces ethanol, while in human muscle cells fermentation produces lactic acid in cells that have a short…

    • 1719 Words
    • 7 Pages
    Better Essays