Preview

Socio-Economic Effects of Child Labour in Pakistan

Better Essays
Open Document
Open Document
9185 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Socio-Economic Effects of Child Labour in Pakistan
Journal of Biotechnology 152 (2011) 114–124

Contents lists available at ScienceDirect

Journal of Biotechnology journal homepage: www.elsevier.com/locate/jbiotec

Review

Halophilic anaerobic fermentative bacteria
Anniina T. Kivistö ∗ , Matti T. Karp
Tampere University of Technology, Department of Chemistry and Bioengineering, Tampere, Finland

a r t i c l e

i n f o

a b s t r a c t
In hypersaline environments bacteria are exposed to a high osmotic pressure caused by the surrounding high salt concentrations. Halophilic microorganisms have specific strategies for balancing the osmotic pressure and surviving in these extreme conditions. Halophilic fermentative bacteria form taxonomically and phylogenetically a coherent group mainly belonging to the order Halanaerobiales. In this review, halophilic anaerobic fermentative bacteria in terms of taxonomy and phylogeny, special characteristics, survival strategies, and potential for biotechnological applications in a wide variety of branches, such as production of hydrogen, are discussed. © 2010 Elsevier B.V. All rights reserved.

Article history: Received 12 March 2010 Received in revised form 17 August 2010 Accepted 23 August 2010 Available online 9 September 2010 Keywords: Halophilic Fermentative Bacteria Thermophilic Alkaliphilic

Contents 1. 2. 3. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Taxonomy and phylogeny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



References: Asker, D., Ohta, Y., 1999. Production of canthaxanthin by extremely halophilic bacteria. J. Biosci. Bioeng. 88, 617–621. Banat, I.M., Makkar, R.S., Cameotra, S.S., 2000. Potential commercial applications of microbial surfactants. Appl. Microbiol. Biotechnol. 53, 495–508. Barbirato, F., Larguier, A., Conte, T., Astruc, S., Bories, A., 1997. Sensitivity to pH, product inhibition, and inhibition by NAD+ of 1, 3-propanediol dehydrogenase purified from Enterobacter agglomerans CNCM 1210. Arch. Microbiol. 168, 160–163. Bhupathiraju, V.K., Oren, A., Sharma, P.K., Tanner, R.S., Woese, C.R., McInerney, M.J., 1994. Haloanaerobium salsugo sp. nov., a moderately halophilic, anaerobic bacterium from a subterranean brine. Int. J. Syst. Bacteriol. 44, 565–572. Bhupathiraju, V.K., McInerney, M.J., Woese, C.R., Tanner, R.S., 1999. Haloanaerobium kushneri sp. nov., an obligately halophilic, anaerobic bacterium from an oil brine. Int. J. Syst. Bacteriol. 49, 953–960. Cayol, J.-L., Ollivier, B., Lawson, A., Soh, A.L.S., Fardeau, M.L., Ageron, E., Grimont, P.A.D., Prensier, G., Guezennec, J., Magot, M., Garcia, J.-L., 1994a. Haloincola saccharolytica subsp. senegalensis subsp. nov., isolated from the sediments of a hypersaline lake, and emended description of Haloincola saccharolytica. Int. J. Syst. Bacteriol. 44, 805–811. Cayol, J.-L., Ollivier, B., Patel, B.K.C., Prensier, G., Guezennec, J., Garcia, J.-L., 1994b. Isolation and characterization of Halothermothrix orenii gen. nov., sp.nov., a halophilic, thermophilic, fermentative, strictly aerobic bacterium. Int. J. Syst. Microbiol. 44, 534–540. A.T. Kivistö, M.T. Karp / Journal of Biotechnology 152 (2011) 114–124 Cayol, J.-L., Ollivier, B., Patel, B.K.C., Ageron, E., Grimont, P.A.D., Prensier, G., Garcia, J.-L., 1995. Haloanaerobium lacusroseus sp. nov., an extremely halophilic fermentative bacterium from the sediments of a hypersaline lake. Int. J. Syst. Bacteriol. 45, 790–797. Cayol, J.-L., Ducerf, S., Patel, B.K.C., Garcia, J.-L., Thomas, P., Ollivier, B., 2000. Thermohalobacter berrensis gen. nov., sp. nov., a termophilic, strictly halophilic bacterium from a solar saltern. Int. J. Syst. Evol. Microbiol. 50, 559–564. Cendrin, F., Chroboczek, J., Zaccai, G., Eisenberg, H., Mevarech, M., 1993. Cloning, sequencing, and expression in Escherichia coli of the gene coding for malate dehydrogenase of the extremely halophilic archaeabacterium. Haloarcula marismortui. Dan, N.P., Visvanathan, C., Basu, B., 2003. Comparative evaluation of yeast and bacterial treatment of high salinity wastewater based on biokinetic coefficients. Bioresour. Technol. 87, 51–56. Ede, S.M., Hafner, L.M., Fredericks, P.M., 2004. Structural changes in the cells of some bacteria during population growth: a Fourier transform infrared-attenuated total reflectance study. Appl. Spectrosc. 58, 317–322. Falb, M., Müller, K., Königsmaier, L., Oberwinkler, T., Horn, P., von Gronau, S., Gonzalez, O., Pfeiffer, F., Bornberg-Bauer, E., Oesterhelt, D., 2008. Metabolism of halophilic archaea. Extremophiles 12, 177–196. Forsberg, C.W., 1987. Production of 1, 3-propanediol from glycerol by Clostridium acetobutylicum and other clostridium species. Appl. Environ. Microbiol. 53, 639–643. Fukuchi, S., Yoshimune, K., Wakayama, M., Moriguchi, M., Nishikawa, K., 2003. Unique amino acid composition of proteins in halophilic bacteria. J. Mol. Biol. 327, 347–357. Hedi, A., Fardeau, M.-L., Sadfi, N., Boudabous, A., Ollivier, B., Cayol, J.-L., 2009. Characterization of Halanaerobaculum tunisiense gen. nov., sp. nov., a new halophilic fermentative, strictly anaerobic bacterium isolated from a hypersaline lake in Tunisia. Extremophiles 13, 313–319. Huynh, F., Tan, T., Swaminathan, K., Patel, B.K.C., 2005. Expression, purification and preliminary crystallographic analysis of sucrose phosphate synthase (SPS) from Halothermothrix orenii. Acta Crystallogr. F: Struct. Biol. Cryst. Commun. 61, 116–117. Joo, W.-A., Kim, C.-W., 2005. Proteomics of halophilic archaea. J. Chromatogr. B 815, 237–250. Kapdan, I.K., Erten, B., 2007. Anaerobic treatment of saline wastewater by Halanaerobium lacusrosei. Process Biochem. 42, 449–453. Kivistö, A., Santala, V., Karp, M., 2010. Hydrogen production from glycerol using halophilic fermentative bacteria. Bioresour. Technol. 101, 8671–8677. Kobayashi, T., Kimura, B., Fujii, T., 2000. Haloanaerobium fermentans sp. nov., a strictly anaerobic, fermentative halophile isolated from fermented puffer fish ovaries. Int. J. Syst. Evol. Microbiol. 50, 1621–1627. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., Higgins, D.G., 2007. ClustalW and ClustalX version 2. Bioinformatics 23, 2947–2948. Levin, D.B., Pitt, L., Love, M., 2004. Biohydrogen production: prospects and limitations to practical application. Int. J. Hydrogen Energy 29, 173–185. Liaw, H.J., Mah, R.A., 1992. Isolation and characterization of Haloanaerobacter chitinovorans gen. nov., sp. nov., a halophilic, anaerobic, chitinolytic bacterium from a solar saltern. Appl. Environ. Microbiol. 58, 260–266. Litchfield, C.D., 1998. Survival strategies for microorganisms in hypersaline environments and their relevance to life on early Mars. Meteorit. Planet. Sci. 33, 813–819. Lowe, S.E., Jain, M.K., Zeikus, J.G., 1993. Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates. Microbiol. Mol. Biol. Rev. 57, 451–509. Ma, F., Hanna, M.A., 1999. Biodiesel production: a review. Biores. Technol. 70, 1–15. Madigan, M.T., Oren, A., 1999. Thermophilic and halophilic extremophiles. Curr. Opin. Microbiol. 2, 265–269. Margesin, R., Schinner, F., 2001. Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5, 73–83. Matheson, A.T., Louie, K.A., Tak, B.D., Zuker, M., 1987. The primary structure of the ribosomal A-protein (L12) from the halophilic eubacterium Haloanaerobium praevalens. Biochemie 69, 1013–1020. Mavromatis, K., Ivanova, N., Anderson, I., Lykidis, A., Hooper, S.D., Sun, H., Kunin, V., Hugenholtz, P., Patel, B., Kyrpides, N.C., 2009. Genome analysis of the anaerobic thermohalophilic bacterium Halothermothrix orenii. PLoS ONE 4, e4192, doi:10.1371/journal.pone.0004192. Mesbah, N.M., Wiegel, J., 2008. Life at extreme limits: the anaerobic halophilic alkalithermophiles. Ann. N.Y. Acad. Sci. 1125, 44–57. Mesbah, N.M., Hedrich, D.B., Peacock, A.D., Rohde, M., Wiegel, J., 2007. Natranaerobius thermophilus gen. nov., sp. nov., a halophilic, alkalithermophilic bacterium from soda lakes of the Wadi An Natrum, Egypt, and proposal of Natranaerobiaceae fam. nov. and Natranaerobiales ord. nov. Int. J. Syst. Evol. Microbiol. 57, 2507–2512. Mevarech, M., Frolow, F., Gloss, L.M., 2000. Halophilic enzymes: proteins with a grain of salt. Biophys. Chem. 86, 155–164. Mouné, S., Manac’h, M., Hirshler, A., Caumette, P., Willison, J.C., Matheron, R., 1999. Haloanaerobacter salinarius sp. nov., a novel halophilic fermentative bacterium that reduces glycine-betaine to trimethylamine with hydrogen or serine as electron donors; emendation of the genus Haloanaerobacter. Int. J. Syst. Bacteriol. 49, 103–112. Mouné, S., Eatock, C., Matheron, R., Willison, J.C., Hirschler, A., Herbert, R., Caumette, P., 2000. Orenia salinaria sp. nov., a fermentative bacterium isolated from anaerobic sediments of mediterranean salterns. Int. J. Syst. Evol. Microbiol. 50, 721–729. 123 Nichols, D.S., Russell, N.J., 1999. Polyunsaturated fatty acids in marine bacteria—a dogma rewritten. Microbiology (UK) 145, 767–779. Nichols, D.S., Nichols, P.D., McMeekin, T.A., 1993. Polyunsatured fatty acids in Antarctic bacteria. Antarct. Sci. 5, 149–160. Nieto, J.J., Fernández-Castillo, R., Márquez, M.C., Ventosa, A., Quesada, E., RuizBerraquero, F., 1989. Survey of metal tolerance in moderately halophilic eubacteria. Appl. Environ. Microbiol. 55, 2385–2390. Nisman, B., 1954. The Stickland reaction. Bacteriol. Rev. 18, 16–42. Ollivier, B., Caumette, P., Garcia, J.-L., Mah, R.A., 1994. Anaerobic bacteria from hypersaline environments. Microbiol. Rev. 58, 27–38. Oren, A., 1983. Clostridium lortetii sp. nov., a halophilic obligatory anaerobic bacterium producing endospores with attached gas vacuoles. Arch. Microbiol. 136, 42–48. Oren, A., 1999. Bioenergetic aspects of halophilism. Microbiol. Mol. Biol. Rev. 63, 334–348. Oren, A., 2001. The bioenergetic basis for the metabolic diversity at increasing salt concentrations: implications for the functioning of salt lake ecosystem. Hydrobiologia 466, 61–72. Oren, A., 2002. Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J. Ind. Microbiol. Biotechnol. 28, 56–63. Oren, A., 2006. The order Haloanaerobiales. Prokaryotes 4, 809–822. Oren, A., 2008. Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst. 4, 2, doi:10.1186/1746-1448-4-2. Oren, A., Paster, B.J., Woese, C.R., 1984a. Haloanaerobiaceae: a new family of moderately halophilic, obligately anaerobic bacteria. Syst. Appl. Microbiol. 5, 71–80. Oren, A., Weisburg, W.G., Kessel, M., Woese, C.R., 1984b. Halobacteroides halobius gen. nov., sp. nov., a moderately halophilic anaerobic bacterium from the bottom sediments of the Dead Sea. Syst. Appl. Microbiol. 5, 58–70. Oren, A., Pohla, H., Stackebrandt, E., 1987. Transfer of Clostridium lortetii to a new genus Sporohalobacter gen. nov. as Sporohalobacter lortetii comb. nov., and description of Sporohalobacter marismortui sp. nov. Oren, A., Gurevich, P., Henis, Y., 1991. Reduction of nitrosubstituted aromatic compounds by the halophilic anaerobic eubacteria Haloanaerobium praevalens and Sporohalobacter marismortui. Appl. Environ. Microbiol. 57, 3367–3370. Oren, A., Gurevich, P., Azachi, M., Henis, Y., 1992. Microbial degradation of pollutants at high salt concentrations. Biodegradation 3, 387–398. Oren, A., Heldal, M., Norland, S., 1997. X-ray microanalysis of intracellular ions in the anaerobic halophilic eubacterium Haloanaerobium praevalens. Can. J. Microbiol. 43, 588–592. Rainey, F.A., Zhilina, T.N., Boulygina, E.S., Stackebrandt, E., Tourova, T.P., Zavarzin, G.A., 1995. The taxonomic status of the fermentative halophilic anaerobic bacteria: description of Haloanaerobiales ord. nov., Halobacteroidaceae fam. nov., Orenia gen. nov. and further taxonomic rearrangements at the genus and species level. Anaerobe 1, 185–199. Ravot, G., Magot, M., Ollivier, B., Patel, B.K.C., Ageron, E., Grimont, P.A.D., Thomas, P., Garcia, J.-L., 1997. Haloanaerobium congolense sp. nov., an anaerobic, moderately halophilic, thiosulfate- and sulfur-reducing bacterium from an African oil field. FEMS Microbiol. Lett. 147, 81–88. Rengpipat, S., Langworthy, T.A., Zeikus, J.G., 1988. Halobacteroides acetoethylicus sp. nov., a new obligately anaerobic halophile isolated from deep subsurface hypersaline environments. Syst. Appl. Microbiol. 11, 28–35. Roberts, M.F., 2005. Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Syst. 1, 5, doi:10.1186/1746-1448-1-5. Röling, W.F.M., van Verseveld, H.W., 1996. Characterization of Tetragenococcus halophila populations in Indonesian soy mash (kecap) fermentation. Appl. Environ. Microbiol. 62, 1203–1207. Saitou, N., Nei, M., 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425. Sheridan, P.P., Brenchley, J.E., 2000. Characterization of a salt-tolerant family 42 galactosidase from a psychrophilic antarctic Planococcus isolate. Appl. Environ. Microbiol. 66, 2438–2444. Simankova, M.V., Chernych, N.A., Osipov, G.A., Zavarzin, G.A., 1993. Halocella cellulolytica gen. nov., sp. nov., a new obligately anaerobic, halophilic, cellulolytic bacterium. Syst. Appl. Microbiol. 16, 385–389. Switzer Blum, J., Stolz, J.F., Oren, A., Oremland, R.S., 2001. Selenihalanaerobacter shriftii gen. nov., sp. nov., a halophilic anaerobe from Dead Sea sediments that respires selenate. Arch. Microbiol. 175, 208–219. Switzer Blum, J., Han, S., Lanoil, B., Saltikov, C., Witte, B., Tabita, F.R., Langley, S., Beveridge, T.J., Jahnke, L., Oremland, R.S., 2009. Ecophysiology of “Halarsenatibacter silvermanii” strain SLAS-1T , gen. nov., sp. nov., a facultative chemoautotrophic arsenate respirer from salt-saturated Searles Lake, California. Appl. Environ. Microbiol. 75, 1950–1960. Tanasupawat, S., Komagata, K., 1995. Lactic acid bacteria in fermented foods in Thailand. World J. Microbiol. Biotechnol. 11, 253–256. Tsai, C.R., Garcia, J.-L., Patel, B.K.C., Cayol, J.-L., Baresi, L., Mah, R.A., 1995. Haloanaerobium alcaliphilum sp. nov., an anaerobic moderate halophile from the sediments of Great Salt Lake. Int. J. Syst. Bacteriol. 45, 301–307. Ventosa, A., Nieto, J.J., 1995. Biotechnological applications and potentialities of halophilic microorganisms. World J. Microbiol. Biotechnol. 11, 85–94. Ventosa, A., Nieto, J.J., Oren, A., 1998. Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev. 62, 504–544. Yakimov, M.M., Timmis, K.N., Wray, V., Fredrickson, H.L., 1995. Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl. Environ. Microbiol. 61, 1706–1713. Zeikus, J.G., Hegge, P.W., Thompson, T.E., Phelps, T.J., Langworthy, T.A., 1983. Isolation and description of Haloanaerobium praevalens gen. nov. and sp. nov., 124 A.T. Kivistö, M.T. Karp / Journal of Biotechnology 152 (2011) 114–124 Zhilina, T.N., Zavarzin, G.A., Detkova, E.N., Rainey, F.A., 1996. Natroniella acetigena gen. nov. sp. nov., an extremely haloalkaliphilic, homoacetic bacterium: a new member of Haloanaerobiales. Zhilina, T.N., Tourova, T.P., Lisenko, A.M., Kevbrin, V.V., 1997. Reclassification of Halobacteroides halobius Z-7287 on the basis of phylogenetic analysis as a new species Halobacteroides elegans sp. nov. Mikrobiology 66, 97–103. Zhilina, T.N., Turova, T.P., Kuznetsov, B.B., Kostrikina, N.A., Lysenko, A.M., 1999. Orenia sivashensis sp. nov., a new moderately halophilic anaerobic bacterium from Lake Sivash lagoons. Microbiology 68, 425–459. Zhilina, T.N., Garnova, E.S., Tourova, T.P., Kostrikina, N.A., Zavarzin, G.A., 2001. Halonatrum saccharophilum gen. nov. sp. nov.: a new haloalkaliphilic bacterium of the order Haloanaerobiales from Lake Magadi. Microbiology 70, 77–85. an obligately anaerobic halophile common to Great Salt Lake sediments. Curr. Microbiol. 9, 225–234. Zhilina, T.N., Zavarzin, G.A., 1990. A new extremely halophilic homoacetogen bacteria Acetohalobium arabaticum, gen. nov., sp. nov. Dokl. Akad. Nauk. SSSR 311, 745–747. Zhilina, T.N., Miroshnikova, L.V., Osipov, G.A., Zavarzin, G.A., 1991. Halobacteroides lacunaris sp. nov.-a new saccharolytic anaerobic extremely halophilic organism from lagoonic hypersaline Lake Chokrak. Mikrobiologiya 60, 714–724. Zhilina, T.N., Zavarzin, G.A., Bulygina, E.S., Kevbrin, V.V., Osipov, G.A., Chumakov, K.M., 1992. Ecology, physiology and taxonomy studies on a new taxon of Haloanaerobiaceae, Haloincola saccharolytica gen nov., sp. nov. Syst. Appl. Microbiol. 15, 275–284.

You May Also Find These Documents Helpful

  • Good Essays

    Cited: Tortora, G., J. Funke, B.R., Case, C.C. (2010) Microbiology: An Introduction. Tenth Edition. San Francisco, Pearson Benjamin Cummings.…

    • 1198 Words
    • 5 Pages
    Good Essays
  • Powerful Essays

    The purpose of the unknown bacteria lab assignment was to select an unknown bacteria culture and, through a series of metabolic tests, identify which bacteria genus resided in the pure culture received. A nutrient broth inoculated with bacterial culture (numbered 45, henceforth referenced as U45) was selected and a streak plate was made to isolate a pure culture for use throughout the assignment.…

    • 1738 Words
    • 7 Pages
    Powerful Essays
  • Good Essays

    E Faecalis Lab Report

    • 1262 Words
    • 6 Pages

    epidermidis and E. coli were subjected to varying NaCl concentrations in order to test for the minimum and optimum salinities of individual bacterial species. Looking at the growth of E. coli under NaCl concentrations of 2, 5, 10, and 15%, the data collected showed optimal growth at lower concentrations, more specifically at 2%. Growth gradually decreased until no growth was present which occurred at NaCl concentrations of 15%. The data collected is representative of data observed from previous experiments conducted in literature. For example, an experiment performed by Jasna Hrenovic and Tomislav Ivankovic, found similar results such that the limiting concentrations of NaCl for multiplication and bacterial growth of E. coli was at 5%, with maximum growth established around 2% NaCl (Hrenovic and Ivankovic 2009).…

    • 1262 Words
    • 6 Pages
    Good Essays
  • Powerful Essays

    This experiment focused on metabolism and biochemical tests. The goal of performing these tests was to differentiate microbes from one another and to compare how metabolic and biochemical processes differ from species to species. The tests performed include: the Fermentation of Sugars Test (sucrose, glucose, and lactose), the Urease Test, the Fermentation of Lactose Test, the Sulfide Indole Mobility (SIM) Test, the Nitrate Reduction Test, the Protein Hydrolysis Test, the Catalase Test, and the Cytochrome Oxidase Test. The microbes that were tested during this lab were: Escherichia coli, Bacillus cereus, the unknown, Proteus vulgaris, Staphylococcus epidermis, Enterobacter aerogenes, the control, and Pseudomonas fluorescens. The microbes tested during these various tests were looking for which would: reduce sulfur/produce sulfate, produce indole, or possess motility, reduce nitrate, and contain protease, catalase and oxidaase.…

    • 2351 Words
    • 10 Pages
    Powerful Essays
  • Better Essays

    Biology Exam Q&a

    • 1892 Words
    • 8 Pages

    Give examples of bacteria classified as Archeabacteria and Eubacteria. Answer: Archeabacteria: Methanogens – “methane makers”; Extreme halophiles – “salt lovers”; Extreme thermophiles – “heat lovers” Eubacteria: spirochetes; chlamydias; proteobacteria; Gram-positive bacteria; cyanobacteria…

    • 1892 Words
    • 8 Pages
    Better Essays
  • Satisfactory Essays

    Halobacterium Lab Report

    • 572 Words
    • 4 Pages

    In this experiment we tested to see how well halobacterium grows in different levels of salinity. We found out that the higher salinity in the growth medium the better the halobacterium grows.…

    • 572 Words
    • 4 Pages
    Satisfactory Essays
  • Good Essays

    Upon merging, an unknown golden microbial growth that was previously identified as a type of golden algae is present (Figure 1). However, isolation and examination of the golden microbe determined it to be a type of semi-photosynthetic bacterial growth that fluoresced in the yellow spectrum. Furthermore, it exhibited immense growth which creates a biotic competition factor that may contribute to the lack of biomass. The goal of my experiment is to identify the bacteria then determine the effect it has on aquatic vertebrate…

    • 224 Words
    • 1 Page
    Good Essays
  • Better Essays

    The purpose of the following study is to determine where the two unknown bacteria acquired in Microbiology lab should be classified in regards to temperature, pH level, and osmoregularity. It is important to classify bacteria in order to identify them. Identification of bacteria is important because they are not only useful but potentially dangerous as well. The identification of bacteria can lead to breakthroughs in healthcare regarding treatment of old and new diseases alike. Identifying bacteria can also be used in many other areas from better crop production through microbial pesticides to biological warfare. Their uses are endless as are their abilities to evolve and adapt to changing environments. That is why it is so important to be able to identify microorganisms. This study was conducted using techniques and experiments learned in microbiology lab that were used to classify the two unknown bacteria.…

    • 862 Words
    • 4 Pages
    Better Essays
  • Good Essays

    Unknown Bacteria

    • 2198 Words
    • 9 Pages

    Certain species of bacteria will produce hydrogen sulfide from the amino acid cysteine. This unknown species of bacteria tested positive for hydrogen sulfide production, indicating it is capable of catabolizing cysteine. This is important in certain environments when cysteine can be used as an energy source for respiration. Any bacteria that could not use cysteine as an energy source were eliminated.…

    • 2198 Words
    • 9 Pages
    Good Essays
  • Good Essays

    Microbiology Unknown

    • 2745 Words
    • 11 Pages

    The objective of this report was to identify an unknown microorganism through several differential media tests. Over the course of a couple weeks, ten tests were performed. First, a gram stain was performed, indicating the bacterium was gram negative. An aerotolerance test determined that the bacterium was a facultative anaerobe. Next, a negative result in the methyl red test indicated that no mixed acid fermentation occurred. The DNase test was performed and yielded a positive result. The SIM test provided two outcomes, that the bacterium did not reduce sulfur nor produce indole from tryptophan. Afterwards, the bacterium was determined to be positive for lysine decarboxylation and citrate. The purple broth and triple sugar iron tests both indicated gas production. The purple broth test was positive for fermentation, and the triple sugar iron test indicated that the bacterium fermented glucose and sucrose. Finally, the bacterium was urease negative.…

    • 2745 Words
    • 11 Pages
    Good Essays
  • Good Essays

    The GasPak system is useful for culturing anaerobic bacteria on standard microbiological media because the GasPak generates carbon dioxide and hydrogen. The hydrogen will combine with oxygen present in an anaerobic jar to produce water. This system can reproducibly attain oxygen levels in the parts per million range if used correctly. This is the best method for determining the oxygen requirements of unknown organisms.…

    • 1019 Words
    • 5 Pages
    Good Essays
  • Powerful Essays

    References: • [L. I. K. Ebbutt, 1960, Microbiology[pdf]. Great Britain: The Distillers Co., Ltd., Glenochil Research Station, Menstrie, Clackmannanshire. Received 21 October 1960. available at http://mic.sgmjournals.org/content/25/1/87.full.pdf+html [accessed 14:24, 11.11.2012]]…

    • 1723 Words
    • 7 Pages
    Powerful Essays
  • Better Essays

    "Thermophiles" are microorganisms with optimal growth temperatures between 60 and 108 degrees Celsius, isolated from a number of marine and terrestrial geothermally-heated habitats including shallow terrestrial hot springs, hydrothermal vent systems, sediment from volcanic islands, and deep sea hydrothermal vents.…

    • 1700 Words
    • 7 Pages
    Better Essays
  • Better Essays

    Mystery Microbe

    • 2499 Words
    • 10 Pages

    References: Breed, Robert S., Murray, E.D.G., Smith, Nathan R. et al. 1957. Bergey’s Manual of Determinative Bacteriology, Williams & Wilkins Company, Baltimore. 1094 pages…

    • 2499 Words
    • 10 Pages
    Better Essays
  • Better Essays

    1. Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655…

    • 1308 Words
    • 6 Pages
    Better Essays