Plastic and Environment

Only available on StudyMode
  • Topic: Plastic, Recyclable materials, Polymer
  • Pages : 14 (4957 words )
  • Download(s) : 1330
  • Published : January 4, 2013
Open Document
Text Preview
Plastic and Environment
A plastic material is any of a wide range of synthetic or semi-synthetic organic solids that are moldable. Plastics are typically organic polymers of high molecular mass, but they often contain other substances. They are usually synthetic, most commonly derived from petrochemicals, but many are partially natural. Composition

Most plastics contain organic polymers. The vast majority of these polymers are based on chains of carbon atoms alone or with oxygen, sulfur, or nitrogen as well. The backbone is that part of the chain on the main "path" linking a large number of repeat units together. To customize the properties of a plastic, different molecular groups "hang" from the backbone (usually they are "hung" as part of the monomers before the monomers are linked together to form the polymer chain). The structure of these "side chains" influence the properties of the polymer. This fine tuning of the properties of the polymer by repeating unit's molecular structure has allowed plastics to become an indispensable part of the twenty-first century world. Additives

Most plastics contain other organic or inorganic compounds blended in. The amount of additives ranges from zero percentage for polymers used to wrap foods to more than 50% for certain electronic applications. The average content of additives is 20% by weight of the polymer. Fillers improve performance and/or reduce production costs. Stabilizing additives include fire retardants to lower the flammability of the material. Many plastics contain fillers, relatively inert and inexpensive materials that make the product cheaper by weight. Typically fillers are mineral in origin, e.g., chalk. Some fillers are more chemically active and are called reinforcing agents. Since many organic polymers are too rigid for particular applications, they are blended with plasticizers, oily compounds that confer improved rheology. Colorants are common additives, although their weight contribution is small. Many of the controversies associated with plastics are associated with the additives.[2] Classification

Plastics are usually classified by their chemical structure of the polymer's backbone and side chains. Some important groups in these classifications are the acrylics, polyesters, silicones, polyurethanes, and halogenated plastics. Plastics can also be classified by the chemical process used in their synthesis, such as condensation, polyaddition, and cross-linking.[3] Thermoplastics and thermosetting polymers

There are two types of plastics: thermoplastics and thermosetting polymers. Thermoplastics are the plastics that do not undergo chemical change in their composition when heated and can be molded again and again. Examples include polyethylene, polypropylene, polystyrene, polyvinyl chloride, and polytetrafluoroethylene (PTFE).[4] Common thermoplastics range from 20,000 to 500,000 amu, while thermosets are assumed to have infinite molecular weight. These chains are made up of many repeating molecular units, known as repeat units, derived from monomers; each polymer chain will have several thousand repeating units. Thermosets can melt and take shape once; after they have solidified, they stay solid. In the thermosetting process, a chemical reaction occurs that is irreversible. The vulcanization of rubber is a thermosetting process. Before heating with sulfur, the polyisoprene is a tacky, slightly runny material, but after vulcanization the product is rigid and non-tacky. Other classifications

Other classifications are based on qualities that are relevant for manufacturing or product design. Examples of such classes are the thermoplastic and thermoset, elastomer, structural, biodegradable, and electrically conductive. Plastics can also be classified by various physical properties, such as density, tensile strength, glass transition temperature, and resistance to various chemical products. Biodegradability

Main article: Biodegradable plastic
tracking img