Conclusion to Motion Lab Kerreon Wright
3rd Period
Ms. Gislason
The purpose of this Motion Lab was to find the acceleration of a steel marble going down a straight track six different times to figure out how an object’s mass affects acceleration. It doesn’t due to Newton’s second law of motion. There were six different accelerations for each trial and they are: 7.88 m/s squared, 6.78 m/s squared, 6.07 m/s squared, 5.57 m/s squared, 4.32 m/s squared, and 5.11 m/s squared. It’s possible to use any two points to figure out and calculate acceleration due to gravity. Sir Isaac Newton used the word “mass” as a synonym for “quantity of matter.” Today, we precisely define mass as a “measure of inertia of a body.” The more mass an object has the more difficult it is to change it’s state of motion, whether it is at rest or moving without net force acting on that body. In other words, without an outside force a body will remain still if still, if moving, keep moving in the same direction at a constant speed. The acceleration of an object is directly proportional to the net force acting on it and is inversely proportional to its mass. Also, the direction of the acceleration is in the direction of the net force acting on the object. Mathematically, this proportionally. In other words, if the mass is constant, the force and acceleration are directly proportional which is corresponding in two states. To calculate the acceleration of the ball at the time of impact, subract the ball’s initial speed (which is zero) from it’s final speed and divide by the time it took to hit the targer. In this lab, acceleration is independent of mass, but does depend on diameter (since the ball is rolling, not sliding or free-falling) the force imparted to the target ball had (about) the same acceleration, but different masses. One of the possible conditions of motion used is: Rest, from the steel marble starting at the top of the inclined track at 0 then rolled down, causing another...

...the card, the card
pushes back.
The marble hit the line
and one marble came off.
2 marbles hit and 2
marbles came off.
3 marbles hit and 3
marbles came off.
This happened because of
newtons 3 law
This shows the first law because the marbles that weren't affected
stayed in place because of inertia.
It shows the 2nd law because it required a greater force to move 2
marble than one marble.
The 3rd law showed because if 2 marbles hit the line, 2 came off. This
is an example of "every action has an equal and opposite reaction.
The beads slid from side to
Side in the dish. They wanted
To stay in one place, so they
Resisted motion.
As one person pulls on the
scale, the other side shows
the same Newton count.
Both scales say 7.
This occurred because every
action has an equal and
opposite reaction.
They demonstrated the first law because the beads resisted motion
unless acted on by the shaking.
The 2nd law shows because the bigger beads need more force to
move them because they have more mass then the smaller beads.
The 3rd law also shows because as you put force on the Petri dish,
the Petri dish pushes back.
The first law shows because the scales are at rest until you start
pulling
The 2nd law shows because more force is required to move the scales
the further they move apart
The 3rd law is apparent because as you pull on one scale, it pulls on the
other scale. This is because every action has an equal and opposite
reaction.
Ball 1: .5 cm
It...

...Fan Cart Lab
We did a fan cart for our physics class the other day. To set up the lab first, we measured the effect of the mass of the fan cart on the acceleration of the cart. The mass of the fan cart was the independent variable and acceleration was the dependent variable. We kept the speed of the cart on medium, and calculated the acceleration and motion. As a result, we had figured out that the bigger the mass the slower the acceleration, as we all should have known. To calculate this we used the second law of Newton (F=ma). For the first experiment we got .233 (m/s/s) with a percent error of 76%. The relationship for the first experiment was inverse because the acceleration was decreasing every time the weight (mass) increased. In the second experiment we got 3.52 (m/s/s) with a percent error of 56.4%. For this experiment the relationship was linear because the mass was increased for each trial. Some errors that could have taken place would be, cart alignment, track damaged, placement of the motion sensor. These can affect the data because it will give a greater percentage error. Fan Cart Lab
We did a fan cart for our physics class the other day. To set up the lab first, we measured the effect of the mass of the fan cart on the acceleration of the cart. The mass of the fan cart was the independent variable and acceleration was the dependent variable. We kept the speed of the...

...Lab II, Problem 3:
Projectile Motion and Velocity
Oct. 06, 2013
Physics 1301W, Professor: Hanany, TA: Vladimir
Abstract
A ball is tossed obliquely. The vectors of position and velocity are measured.
The acceleration is calculated.
Introduction
A toy company is now making an instructional videotape on how to predict the position. Therefore, in order to make the prediction accurate, how the horizontal and vertical components of a ball’s position as it flies through the air should be understood. This experiment is to calculate functions to represent the horizontal and vertical positions of a ball. It does so by measuring and calculating the components of the position and velocity of the ball during the toss. Therefore, we can also calculate the acceleration during the procedure.
Prediction
The x-axis is located on the ground level horizontally, pointing to where the ball is initially thrown, that is opposite the direction the ball flies. The vertical y-axis passes through the highest point of the ball during the fly and point upward.
Since the ball experiences no other force, except for gravity, during the toss. There is no horizontal force. It is predicted that the ball should have a constant horizontal speed, which is the horizontal component of initial velocity. Vertically, it has gravity pulling it down all the time. So it should have an acceleration of –g (minus is for the direction). Since it has a vertical...

...Keith Beachy
College Physics 1 Lab - Section 001
CP1 Lab Report - Projectile Motion
October 12, 2009
The purpose of Lab Assignment 1 was to analyze projectile motion. In doing so, we determined the initial velocity of the ball shot horizontally from the spring loaded projectile launcher. Also, we verified the angle at which the projection of the ball would produce a maximum range. Lastly, we predicted the range that a ball would travel at a certain angle, theta.
Projectile motion is the motion of objects that are initially launched, or projected, and then continue moving with only the force of gravity acting upon it. The forces involved in projectile motion are the initial velocity of the projected object at a certain angle and gravity acting downward on the object. The vector nature of forces can be used to determine how far an object launched can go and its initial velocity at an angle of 0 by finding its x and y components separately. The components of velocity are found by taking the initial velocity multiplied by sin for the y component, and cos for the x component. To find the initial velocity, we had to plug in specific values into the equation, v=0.5g(x/y), all raised to the one-half power, which was equal to 2.5 m/s. This equation is derived from the equation for the vertical component of the motion which is y=0.5gty....

...Name __ Projectile Motion
Go to http://phet.colorado.edu/simulations/sims.php?sim=Projectile_Motion
and click on Run Now.
Pre Lab Reflections:
What are the
What forces are at play on a body under fall? Gravity plays a part in force on the weight of your body.
Make a prediction of which angle results in maximum range. I predict that the 45 degrees will result in max range.
Activity:
Open the sim, projectile motion.
Familiarize yourself with the variables shown there.
Ensure the air resistance check box remains unchecked.
Using the mouse set the angle of projection(i) to 5 deg.
Alternatively enter the value in directly.
Set the initial speed to a value U=15m/s .
Click on Fire to start the projectile and record the corresponding value of the range R.
Repeat with values
i= 10,15,20,25,30,35,40,45,50,60,70,75,80,85.
Draw a graph of Range (R) against Angle of projection (i)
You may want your lay out to appear like in the table.
U=………
Angle (i)
Range(m)
5
9.7
10
12.2
15
14.9
20
17.5
30
21.8
35
23.2
40
24
45
24.1
50
23.6
55
22.4
60
20.6
65
18.1
70
15.2
75
11.8
80
8.1
85
4.1
From your graph,
Describe the shape of the graph obtained. Comment.
In a parabola -unimodal, bell-shaped distribution
Determine using the graph the angle for maximum range.
Looking at the graph it is 45 degrees
Post activity discussion:
Explain why there were differences...

...Pre-lab:
Newtons Three Laws of Motion:
There are three laws of motion that have been stated by Sir Isaac Newton during the sixteenth century that are looked upon even today.
The first of these laws states that an object will stay in at rest or in a constant velocity unless a force acts upon it. In simplest terms this means that if u place an apple on the table it isn't just going to roll off.
The second of these laws states that when a force acts upon an object it causes it to accelerate, and the greater the mass of the object the more of the force will be needed to push it. Basically this means that it takes more force to move a heavy object than it does to move a lighter object. The Second Law of Motion can be stated as Force = (Mass)(Acceleration).
The third and final law of motion states that for every action there is an equal and opposite reaction. This simply means that pushing on an object causes that object to push back against you, the exact same amount, but in the opposite direction.
Motion:
Motion is movement. It is the act of moving and remaining at rest. When you have motion you have a velocity that is greater than zero.
Force:
A force is anything that causes an object to move and accelerate which would be still if the force was absent.
Inertia:
Inertia is remaining at a constant velocity or at rest without any...

...For other uses, see Force (disambiguation).
Page semi-protected
See also: Forcing (disambiguation)
Force
Force examples.svg
Forces are also described as a push or pull on an object. They can be due to phenomena such as gravity, magnetism, or anything that might cause a mass to accelerate.
Common symbol(s): F, F
in SI base quantities: 1 kg·m/s2
SI unit: newton
Derivations from other quantities: F = m a
Classical mechanics
History
Timeline
Branches[show]
Formulations[show]
Fundamental concepts[show]
Core topics[show]
Rotational motion[show]
Scientists[show]
v
t
e
In physics, a force is any influence that causes an object to undergo a certain change, either concerning its movement, direction, or geometrical construction. In other words, a force can cause an object with mass to change its velocity (which includes to begin moving from a state of rest), i.e., to accelerate, or a flexible object to deform, or both. Force can also be described by intuitive concepts such as a push or a pull. A force has both magnitude and direction, making it a vector quantity. It is measured in the SI unit of newtons and represented by the symbol F.
The original form of Newton's second law states that the net force acting upon an object is equal to the rate at which its momentum changes with time.[1] If the mass of the object is constant, this law implies that the acceleration of an object is directly proportional to the net...

...Abstract
In this lab experiment the range equation will be used to calculate range of the launched rocket, initial velocity and distance traveled. Various projectiles will be tested at various angles and table heights for experiment one. Results will be compared to initial calculations. Despite human error and calculation error, the results still correlated with the hypothesis.
Introduction
Background
Acceleration is constant at 9.8 m/s2 because of the force of gravity. For experiment 1 the velocity will be calculated by measuring “x” and “y” and using the combined x & y equations to solve for Vo. Vo= x⌠g/2y. For experiment 2 the range equation for distance x=R is applicable since the launch and landing elevations are the same. R=(Vo2sin2ᶿ)/g
Objective
The objective of experiment one is to determine the distance a falling object will travel when the launch height is changed. The objective of experiment two is to observe the distance, x=R, a projectile will travel when the launch angle is changed. Acceleration is constant at 9.8 m/s2 in all the experiments due to gravity.
Hypothesis
Experiment 1: When the height is raised, the marble will have more time to continue traveling at its initial velocity while the gravitational force is acting upon it, increasing the distance the marble travels while falling.
Experiment 2: The range of the rocket will decrease as the angle launched moves away from 45 degrees.
Experiment
Materials:
Experiment 1:...