Page 1 of 10

Linear Equations With One And Two Unkno

Continues for 9 more pages »
Read full document

Linear Equations With One And Two Unkno

Page 1 of 10
Course Notes Linear Math & Matrices
PSB – Dr. H. Schellinx

 

 

 
Linear
 equations
 

 
As
 we
 have
 seen,
 a
 linear
 equation
 with
 n
 different
 variables,
 say
  x1, x2 , x3,..., xn ,
 can
 
always
 be
 written
 in
 the
 equivalent
 standard
 form
  a1 x1 + a2 x2 + a3 x3 +... + an xn = c ,
 
where
 c
 is
 a
 constant,
 the
 xi
 are
 the
 unknowns
 and
 the
 ci
 are
 coefficients.
 
 

 
Here
 are
 some
 examples: 5x − 3y = z + w − 6 is
 a
 linear
 equation
 with
 4
 unknowns
 (x,y,w
 
and
 z).
 It
 has
 the
 equivalent
 standard
 form
  5x − 3y − w − z = −6 .
 

−3y = y + 2x − 7
 is
 a
 linear
 equation
 with
 2
 unknowns
 (x
 and
 y).
 It
 has
 the
 equivalent
 
standard
 form
  2x + 4y = 7 .
 

 
Linear
 equations
 with
 one
 unknown
 

 
Linear
 equations
 with
 only
 one
 variable
 are
 the
 simplest
 ones.
 We
 can
 always
 write
 such
 
an
 equation
 in
 the
 standard
 form
  ax = b .
 Here
 x
 is
 the
 only
 variable
 (the
 unknown).
 The
 
coefficient
 a
 and
 the
 constant
 b
 are
 both
 real
 numbers.
 

 
1. If
  a ≠ 0 ,
 the
 equation
 has
 precisely
 one
 solution:
  x =

b
.
 
a

2. If
  a = 0 and
  b ≠ 0 ,
 the
 equation
 has
 no
 solution.
 It
 is
 a
 contradiction.
 
3. If
  a = 0 and
  b = 0 ,
 all
 real
 numbers
 satisfy
 the
 equation.
 It
 is
 an
 identity.
 

 
Recall
 that
 the
 root
 or
 zero
 of
 a
 function
 f(x)
 is
 a
 member
 x
 of
 the
 domain...
Course Notes Linear Math & Matrices
PSBDr. H. Schellinx
!
!
!
Linear!equations!
!
!"#$%#&'(%#"%%)*#'#linear!equation!$+,&!"!-+..%/%),#('/+'01%"*#"'2#
x1,x2,x3,..., xn
*#3')#
'1$'2"#0%#$/+,,%)#+)#,&%#%45+('1%),##$%"&%'&#()'*#
a1x1+a2x2+a3x3+... +anxn=c
*#
$&%/%#+#+"#'#36)",'),*#,&%#,-#'/%#,&%#5)7)6$)"#')-#,&%#+-!'/%#36%..+3+%),"8##
#
9%/%#'/%#"6:%#.,%*/0.#;
5x3y=z+w6
+"#'#1+)%'/#%45',+6)#$+,&#<#5)7)6$)"#=,1213#
')-#4>8#?,#&'"#,& %#%45+('1%),#",')-'/-#.6/:#
5x3ywz=6
8#
3y=y+2x7
#+"#'#1+)%'/#%45',+6)#$+,&#@#5 )7)6$)"#=,#')-#2>8#?,#&'"#,&%#%45+('1%),#
",')-'/-#.6/:#
2x+4y=7
8#
!
Linear!equations!with!one!unknown!
!
A+)%'/#%45',+6)"#$+,&#6)12#6)%#('/+'01%#'/%#,&%#"+:B1%",#6)%"8#C%#3')#'1$'2"#$/+,%#"53&#
')#%45',+6)#+)#,&%#",')-'/-#.6/:#
ax =b
8#9%/%#,!+"#,&%#6)12#('/+'01%#=,&%#5)7)6$)>8#D&%#
36%..+3+%),#%!')-#,&%#36)",'),#5#'/%#06,&#/%'1#)5:0%/"8#
#
E8 ?.#
*#,&%#%4 5',+6)#&'"#B/% 3+"%12#6 ) %#"615,+ 6 );#
x=b
a
8#
@8 ?.#
')-#
*#,&%#%4 5',+6)#&'"#)6 #" 6 1 5,+6)8#?,#+ " #' # +)" $'%&-+$-)"8#
F8 ?.#
')-#
*#%00#/%'1#)5:0%/"#"',+".2#,&%#%45',+6)8#?,#+"#')#-&."$-$28#
#
G%3'11#,&',#,&%#'))$#6/#4.')!6.#'#.5)3,+6)#(6,7#+"#'#:%:0%/!,#6.#,&%#-6:'+)#6.#(!"53&#,&',#
(6,7!8!9#=$%#"'2#,&',#(6,7#(')+"&%"#',#,>8#
D&%#"615,+6)#6.#,&%#1+)%'/#%45',+6)#$+,&#6)%#5)7)6$)#
ax =b
*#36//%" B6)-" #, 6 #, & %#/66,#
6.#,&%#1+)%'/#.5)3,+6)#
f(x)=ax b
8#?)#,&%#,$6#-+:%)"+6)'1#HI5 3 1+-%')#B1')%J*#5"+)K #' #
/%3,')K51'/#366/-+)',%#"2",%:*#,&%#K/'B&#6.#,&+"#.5)3,+6)#+"#,&%#",/'+K&,#1+)%#-%,%/:+)%-#
02#,&%#%45',+6)#
y=ax b
8##
D&%##)0:$-)"#6.#,&%#%45',+6)#+"#,&%#B6+),#$&%/%#,&%#1+)%#3/6""%"#,&%#LM'L+"#6.#65/#
/%3,')K51'/#366/-+)',%#"2",%:8#
!"#')#%L':B1%*#36)"+-%/#,&%#.6116$+)K#1+)%'/#%45',+6)#$+,&#6)%#5)7)6$);#
2x=4
8#D&%#
36//%"B6)-+)K#1+)%'/#.5)3,+6)#+"#
f(x)=2x4
*#$&+3&#&'"#'" #+, " #K/'B&#, &%#1+)%#
y=2x4
8#D&%#"615,+6) #6.#,&%#%45',+6 ) #+ " #, & % #N%/6#6.#, &%#.5)3 ,+ 6 )*#+8%8#,&%#B6+),#$&%/%#
,&%#1+)%#3/6""%"#,&%#LM'L+";#=@*O>8!
#