History of 4G

Only available on StudyMode
  • Topic: Mobile phone, 3GPP Long Term Evolution, 4G
  • Pages : 11 (3450 words )
  • Download(s) : 93
  • Published : October 20, 2010
Open Document
Text Preview

Mobile devices are getting smaller, lighter, and more powerful; they have bigger screens and longer battery life, more features and more capabilities. Things like watching the football game on your mobile device, watching movies, videoconferencing, paying your bills and downloading music to the palm of your hand will become second nature in the future.

Bandwidth will always be the limiting factor in the development of applications and devices, be it wired, or wireless. At the moment the wireless world doesn’t have a large-cell, high bandwidth standard, that is capable of delivering the much needed speeds to a mobile device. The short fall of 3G networks is clear, it’s just not fast enough, offering 384kbps doesn’t meet the requirements of what the end user has come to expect these days. Some people see 3G as a stop-gap, until a fully integrated IP network is created; some countries have even chosen to bypass 3G and head straight to 4G, a method which has its advantages, and its disadvantages II.A. 4G HISTORY

At the end of the 1940’s, the first radio telephone service was introduced, and was designed to users in cars to the public land-line based telephone network. Then, in the sixties, a system launched by Bell Systems, called IMTS, or, “Improved Mobile Telephone Service", brought quite a few improvements such as direct dialling and more bandwidth. The very first analog systems were based upon IMTS and were created in the late 60s and early 70s. The systems were called "cellular" because large coverage areas were split into smaller areas or "cells", each cell is served by a low power transmitter and receiver. The 1G, or First Generation. 1G was an analog system, and was developed in the seventies,1G had two major improvements, this was the invention of the microprocessor, and the digital transform of the control link between the phone and the cell site. 1G analog system for mobile communications saw two key improvements during the 1970s: the invention of the microprocessor and the digitization of the control link between the mobile phone and the cell site. Advance mobile phone system (AMPS) was first launched by the US and is a 1G mobile system. Based on FDMA, it allows users to make voice calls in 1 country


2G first appeared around the end of the 1980’s, the 2G system digitized the voice signal, as well as the control link. This new digital system gave a lot better quality and much more capacity (i.e. more people could use their phones at the same time), all at a lower cost to the end consumer. Based on TDMA, the first commercial network for use by the public was the Global system for mobile communication (GSM).


3G systems promise faster communications services, entailing voice, fax and Internet data transfer capabilities, the aim of 3G are to provide these services anytime, anywhere throughout the globe, with seamless roaming between standards. ITU’s IMT-2000 is a global standard for 3G and has opened new doors to enabling innovative services and application for instance, multimedia entertainment, and location-based services, as well as a whole lot more. In 2001, Japan saw the first 3G network launched.

3G technology supports around 144 Kbps, with high speed movement, i.e. in a vehicle. 384 Kbps locally, and up to 2Mbps for fixed stations, i.e. in a building.


For 1 and 2G standards, bandwidth maximum is 9.6 kbit/sec, This is approximately 6 times slower than an ISDN (Integrated services digital network). Rates did increase by a factor of 3 with newer handsets to 28.8kbps. This is rarely the speed though, as in crowded areas, when the network is busy, rates do drop dramatically. Third generation mobile, data rates are 384 kbps (download) maximum, typically around 200kbps, and 64kbps upload. These are comparable to home broadband connections.

Fourth generation mobile communications will...
tracking img