Gregor Mendel

Only available on StudyMode
  • Download(s) : 1203
  • Published : May 11, 2000
Open Document
Text Preview
Gregor Mendel played
a huge role in the underlying principles of genetic inheritance. Gregor was born, July 22 1822 in Heinzendorf, Austrian Silesia (now known as Hyncice, Czech Republic), with the name Johann Mendel. He changed his name to Gregor in 1843. He grew up in an Augustinian brotherhood and he learned agricultural training with basic education. He then went on to the Olmutz Philosophical Institute and later entered the Augustinian Monastery in 1843. After 3 years of theological studies, Mendel went to the University of Vienna, where 2 professors influenced him; the physicist Doppler and a botanist named Unger. Here he learned to study science through experimentation and aroused his interest in the causes of variation in plants. He returned to Brunn in 1854 where he was a teacher until 1868. Mendel died January 6 1884.

In 1857, Mendel began breeding garden
peas in the abbey garden to study inheritance, which lead to his law of Segregation and independent assortment. Mendel observed several characteristics of the garden peas which include: plant height (tallness/shortness), seed color (green/yellow), seed shape (smooth/wrinkled), seed-coat color (gray/white), pod shape (full/constricted), pod color (green/yellow), and flower distribution (along length/ at end of stem). Mendel keep careful records of his experiments and first reported his findings at a meeting of the Brunn Natural History Society. The results of Mendel's work were published in 1866 as "Experiments with Plant Hybrids" in the society's journal.

Mendel's Law of Segregation stated that the members
of a pair of homologous chromosomes segregate during meiosis and is distributed to different gametes. This hypothesis can be divided into four main ideas. The first idea is that alternative versions of genes account for variations in inherited characters. Different alleles will create different variations in inherited characters. The second idea is that for each character, an organism...
tracking img