Flight in Chordate

Only available on StudyMode
  • Topic: Flying and gliding animals, Flight, Flying squirrel
  • Pages : 16 (5192 words )
  • Download(s) : 69
  • Published : May 15, 2013
Open Document
Text Preview
Types of aerial locomotion

Animal aerial locomotion can be divided into two categories - powered and unpowered. In unpowered modes of locomotion, the animal uses on aerodynamics forces exerted on the body due to wind or falling through the air. In powered flight, the animal uses muscular power to generate aerodynamic forces. Animals using unpowered aerial locomotion cannot maintain altitude and speed due to unopposed drag, while animals using powered flight can maintain steady, level flight as long as their muscles are capable of doing so. Unpowered aerial locomotion

These modes of locomotion typically require an animal start from a raised location, converting that potential energy into kinetic energy and using aerodynamic forces to control trajectory and angle of descent. Energy is continually lost to drag without being replaced, thus these methods of locomotion have limited range and duration.

Falling: decreasing altitude under the force of gravity, using no adaptations to increase drag or provide lift. Parachuting: falling at an angle greater than 45° from the horizontal with adaptations to increase drag forces. Very small animals may be carried up by the wind. Some gliding animals may use their gliding membranes for drag rather than lift, to safely descend. Gliding flight: falling at an angle less than 45° from the horizontal with lift from adapted aerofoil membranes. This allows slowly falling directed horizontal movement, with streamlining to decrease drag forces for aerofoil efficiency and often with some maneuverability in air. Gliding animals have a lower aspect ratio (wing length/breadth) than true flyers.

Powered flight

Powered flight has evolved only 4 times (birds, bats, pterosaurs, and insects), and uses muscular power to generate aerodynamic forces and replace energy lost to drag.

Flapping: moving wings for directly producing thrust. May ascend without the aid of the wind, as opposed to gliders and parachuters.

Externally-powered aerial locomotion

Ballooning and soaring are not powered by muscle, but rather by external aerodynamic sources of energy: the wind and rising thermals, respectively. Both can continue as long as the source of external power is present. Soaring is typically only seen in species capable of powered flight, as it requires extremely large wings.

Ballooning: being carried up into the air from the aerodynamic effect on long strands of silk in the wind. Certain silk-producing arthropods, mostly small or young spiders, secrete a special light-weight gossamer silk for ballooning, sometimes traveling great distances at high altitude. Soaring: gliding in rising or otherwise moving air that requires specific physiological and morphological adaptations that can sustain the animal aloft without flapping its wings. The rising air is due to thermals, ridge lift or other meteorological features. Under the right conditions, soaring creates a gain of altitude without expending energy. Large wingspans are needed for efficient soaring.

Many species will use multiple of these modes at various times; a hawk will use powered flight to rise, then soar on thermals, then descend via free-fall to catch its prey. Evolution and ecology of aerial locomotion

Gliding and Parachuting

While gliding may be a precursor to some forms of powered flight, gliding has some ecological advantages of its own. Gliding is a very energy-efficient way of travelling from tree to tree. An argument made is that many gliding animals eat low energy foods such as leaves and are restricted to gliding because of this, whereas flying animals eat more high energy foods such as fruits, nectar, and insects.[1] In contrast to flight, gliding has evolved independently many times (more than a dozen times among extant vertebrates), however these groups have not radiated nearly as much as have groups of flying animals.

One point of interest is the distribution of gliding animals. Most...
tracking img