Fibre Optics

Only available on StudyMode
  • Download(s): 77
  • Published: May 4, 2013
Read full document
Text Preview
Fibre Optics

Technology over the past century has advanced greatly. Fibre optics however is being utilized since more than a hundred years. Optical fibre is a model that has evolved greatly over time. From guided transmission lights experiments to lasers and light emitting diodes (LED), and to dense wavelength-division multiplexing (DWDM), the area under which optical fibre can be used has expanded. One of the modern and commonly used applications of fibre optics is high resolution visuals (HDTV) which has enabled us to view broadcasts at 1080p screen resolution which is a result of FTTc and FTTh (fibre to the curb) network. Satellites making use of fibre optics do not have to undergo lessening (fibreopticsinfo). There are generally six theories of light from which the theory of optical fibre has evolved. The relevant theories to optical fibre are emission theory, corpuscular theory, wav theory, electromagnetic theory and quantum theory. Reflection and refraction of light are vital elements in optical fibre. These two properties have been explained by Newton in his laws. Another very important property relative to fibre optics is the critical angle of light. Critical angle is defined as the minimum angle which can allow total internal reflection to take place. This is governed by Snell’s law. There are two theories which explain the propagation of light through optical fibres. The first theory is the ‘Ray Theory’ under which light is considered to be a simple ray of light and the propagation properties are relevant to that. This theory explains the accepting and guiding behavior of light inside a fibre (Sathish Kumar). The second theory is the ‘Mode Theory’ or the ‘Wave Representation’ approach. According to the Mode Theory, light is an electromagnetic wave and acts like an electromagnetic wave inside a fibre. This theory explains the phenomenon of absorption...
tracking img