Effects of Human Urine on the Growth of Indian Tree

Only available on StudyMode
  • Download(s) : 539
  • Published : January 8, 2013
Open Document
Text Preview
I. INTRODUCTION
Background of the Study
Most of the Filipinos earn a living through agriculture. Throughout the years, a lot of fertilizers were improvised, mostly for the comfort of the Filipino farmers. Human urine, for example, is a well-balanced nitrogen-rich quick-reacting liquid fertilizer. It contains nitrogen, potassium and phosphorus and other nutrients depending on the diet. The health risks associated with use of human urine in plant production are generally low, that is why it’s an adequate plant fertilizer.

On another note, Indian tree (Polyalthia longifolia) is a small-to-medium-sized evergreen tree growing up to 15 meters. Its leaves are long, narrow and oblanceolate, dark green, glossy and have wavy margins. It is native to India, Sri Lanka and recently introduced in the Philippines and widely cultivated in Metro Manila, planted in parks, garden and roadsides. Studies showed that the seeds of Indian Tree contain amino acids, the barks contain phytochemical, the root extract contains antimicrobial, various solvent extracts contain anti-inflammatory, and the seeds that are extracted contain antifungal.

Objectives (major and minor) of the study
This study, therefore, endeavors to investigate the effects of human urine on the growth of Polyalthia longifolia also commonly known as Indian Tree. It also endeavors to inform the farmers and the people in the field of agriculture practical guidance of the other uses of human urine.

Significance of the Study
This investigatory project entitled “The Effects Of Human Urine On The Growth Of Indian Tree” will be conducted in order to help and inform the people especially the farmers that “the economical value of the urine can be calculated by comparing with the price of mineral fertilizer on the local market or by calculating the value of the increased yield of the fertilizer.” (Anna Richert, et.al., 2010-2011). We would like it to be one of the aspects that contribute to the progression of our technology especially in the field of agriculture.

This can add knowledge to students, teachers and administrators in making a research and improving their experiment especially those who are working on herbal medicine. This project aims to guide the future researchers in making their experiment.

Scope and Limitation
This study will focus on using the human urine as a fertilizer. Human urine, water and a combination of both will be poured on to the soil of the Indian plant. Using a commercially available Indian plant will make a comparative appraisal. This study, however, will not alter the active compounds of the soil and the seed itself.

II. REVIEW OF RELATED LITERATURE
Ricker, A. et.al. (2010) stated that urine is an aqueous solution made up of more than 95 per cent water, with the remaining constituents made up of urea, creatinine, dissolved ions (chloride, sodium, potassium, etc), inorganic and organic compounds or salts. Most of these remain in solution, but there can be a tendency for phosphorus-rich substances to sediment in containers that are stored for hygienization. This substance has a syrupish texture, and if urine is collected in a piping system, this “urine syrup” can sediment in pipes if the inclination is not sufficient. Differences in composition of excreta between different regions reflect differences in the uptake of consumed crops and thus in the plant nutrient supply needed for maintaining crop fertility in the region. Urine used directly or after storage is a high quality, low cost alternative to the application of N-rich mineral fertilizer in plant production. The nutrients in urine are in ionic form and their plant-availability compares well with chemical fertilizer (Johansson et al., 2001; Kirchmann and Pettersson, 1995; Simons and Clemens 2004). Urine also contains large amounts of phosphorus, potassium, sulphur and micronutrients, but due to its high content of N, its P/N and K/N ratios are lower than in many mineral...
tracking img