Data Leakage Detection

Digital watermarking , Mathematical optimization

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,

VOL. 23,

NO. 1,

JANUARY 2011

51

Data Leakage Detection
Panagiotis Papadimitriou, Student Member, IEEE, and Hector Garcia-Molina, Member, IEEE Abstract—We study the following problem: A data distributor has given sensitive data to a set of supposedly trusted agents (third parties). Some of the data are leaked and found in an unauthorized place (e.g., on the web or somebody’s laptop). The distributor must assess the likelihood that the leaked data came from one or more agents, as opposed to having been independently gathered by other means. We propose data allocation strategies (across the agents) that improve the probability of identifying leakages. These methods do not rely on alterations of the released data (e.g., watermarks). In some cases, we can also inject “realistic but fake” data records to further improve our chances of detecting leakage and identifying the guilty party. Index Terms—Allocation strategies, data leakage, data privacy, fake records, leakage model.

Ç
1 INTRODUCTION
we study the following scenario: After giving a set of objects to agents, the distributor discovers some of those same objects in an unauthorized place. (For example, the data may be found on a website, or may be obtained through a legal discovery process.) At this point, the distributor can assess the likelihood that the leaked data came from one or more agents, as opposed to having been independently gathered by other means. Using an analogy with cookies stolen from a cookie jar, if we catch Freddie with a single cookie, he can argue that a friend gave him the cookie. But if we catch Freddie with five cookies, it will be much harder for him to argue that his hands were not in the cookie jar. If the distributor sees “enough evidence” that an agent leaked data, he may stop doing business with him, or may initiate legal proceedings. In this paper, we develop a model for assessing the “guilt” of agents. We...
tracking img