Advantages of Nephron Technology

Only available on StudyMode
  • Topic: Lubricant, Petroleum, Motor oil
  • Pages : 6 (2025 words )
  • Download(s) : 104
  • Published : March 21, 2013
Open Document
Text Preview
Nephron technology makes a difference
Engr Maliha Maisha Rahman
Bannichi Enterprise limited

Literature Review:TBN: In short, a TBN (total base number) measures the amount of active additive left in a sample of oil. The TBN of a used oil can aid the user in determining how much reserve additive the oil has left to neutralize acids. The lower the TBN reading, the less active additive the oil has left. Oil’s function is to lubricate, clean, and cool the engine. Additives are added to the oil to enhance those functions.Viscosity: Technically, viscosity is defined as resistance to flow. Commonly though, we think of it as an oil's thickness. To be more specific, it is the thickness of an oil at a given temperature.The viscosity of an oil could be reported at any temperature, but to standardize things, most laboratories report either a low temp (100F or 40C) or a high temp (210F or 100C) and stick with either SUS or cSt. The standardized temperature reading allows us to compare apples to apples for judging the thickness of the oil.Single Grade & Multi Grade Viscosity: today since most gas- or diesel-engine manufacturers recommend multi-grades. At operating temperature, a straight weight performs just as well as a multi-viscosity oil, and there is nothing wrong with using a straight weight. It's just a simpler form of oil. Some diesel fleets still use straight weights, as do about half the piston aircraft operators. The difference between multi-grade and straight-weight oil is simply the addition of a viscosity improving (VI) additive. The most common grade of automotive oil in use today is the 5W/30, which is a mineral oil refined with VI additives that leave it reading as an SAE 5W viscosity when cold, yet an SAE 30W when hot (210F). The advantage to the multi-weight is that when starting the engine, the multi-viscosity oil (with its thickness of an SAE 5W when cold), allows the engine to spin over more easily. The most common diesel use oil is 15W/40. It is an SAE 15W oil with a VI additive that leaves it the thickness of an SAE 40 weight at operating temperature. What makes an oil a diesel-use oil (rather than automotive-use) is the level of additives used. Diesels require heavier levels of dispersant and anti-wear additives. These heavier additive levels are objectionable for automotive engines since they may interfere with the emission controls mandated by the EPA. Need To Choose the Proper Viscosity: We are seeing that trend for newer engines, for which the recommended grade is getting progressively lighter. The common 10W/30 has become a 5W/30, and some manufacturers even recommend 5W/20 oil. On the other hand, we can't see (in oil analysis) where it hurts anything to run heavier 10W/30s or even 10W/40s in modern automotive engines. The heavier oils provide more bearing film, and that's important at the lower end. If your oil is too light, the bearing metals can increase. If the oil is too heavy, the upper end metals can increase. The trick is to find the right viscosity for your particular engine, which is why we suggest following the manufacturer's recommendation.Changes in Viscosity/Adding additives? Then the Result Comes: Adding anything foreign to your oil can change its viscosity. Some types of after-market oil additives cause a quite high viscosity at operating temperature. While an additive might improve bearing wear, it can often cause poorer upper-end wear. We don't recommend any type of after-market additives. Other changes to viscosity can result from contamination of the oil. Moisture and fuel can both cause the viscosity to increase or decrease, depending on the contaminant and how long it has been present in the oil. Antifreeze often increases an oil's viscosity. Exposure to excessive heat (leaving the oil in use too long, engine overheating) can also increase viscosity. When your oil's viscosity comes back as either lower or higher than the "Should Be" range, something is causing it. If the...
tracking img