Space-Time Block Coding for Wireless Communications

Only available on StudyMode
  • Topic: MIMO, Space–time block code, Diversity scheme
  • Pages : 381 (93846 words )
  • Download(s) : 35
  • Published : March 10, 2013
Open Document
Text Preview
Space-Time Block Coding for Wireless Communications
Space-time coding is a technique that promises greatly improved performance in wireless communication systems by using multiple antennas at the transmitter and receiver. Space-Time Block Coding for Wireless Communications is an introduction to the theory of this technology. The authors develop the subject using a unified framework and cover a variety of topics ranging from information theory to performance analysis and state-of-the-art space-time block coding methods for both flat and frequency-selective fading multiple-antenna channels. They concentrate on key principles rather than specific practical applications, and present the material in a concise and accessible manner. Their treatment reviews the fundamental aspects of multiple-input, multiple-output communication theory, and guides the reader through a number of topics at the forefront of current research and development. The book includes homework exercises and is aimed at graduate students and researchers working on wireless communications, as well as practitioners in the wireless industry.

Space-Time Block Coding for Wireless Communications
Erik G. Larsson

Petre Stoica

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York Information on this title: © Cambridge University Press 2003 This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2003 Reprinted with corrections 2005 This digitally printed version 2008 A catalogue record for this publication is available from the British Library ISBN 978-0-521-82456-9 hardback ISBN 978-0-521-06533-7 paperback


ABOUT THE AUTHORS PREFACE NOTATION COMMONLY USED SYMBOLS ABBREVIATIONS 1 INTRODUCTION 1.1 Why Space-Time Diversity? 1.2 Space-Time Coding 1.3 An Introductory Example 1.3.1 One Transmit Antenna and Two Receive Antennas 1.3.2 Two Transmit Antennas and One Receive Antenna 1.4 Outline of the Book 1.5 Problems 2 THE TIME-INVARIANT LINEAR MIMO CHANNEL 2.1 The Frequency Flat MIMO Channel 2.1.1 The Noise Term 2.1.2 Fading Assumptions 2.2 The Frequency-Selective MIMO Channel 2.2.1 Block Transmission 2.2.2 Matrix Formulations 2.3 Summary and Discussion 2.4 Problems

x xiii xv xvii xix 1 1 3 3 4 5 7 7 8 8 10 10 14 16 18 20 21 v

vi 3 MIMO INFORMATION THEORY 3.1 Entropy and Mutual Information 3.2 Capacity of the MIMO Channel 3.3 Channel Capacity for Informed Transmitters 3.4 Ergodic Channel Capacity 3.5 The Ratio Between IT and UT Channel Capacities 3.6 Outage Capacity 3.7 Summary and Discussion 3.8 Proofs 3.9 Problems 4 ERROR PROBABILITY ANALYSIS 4.1 Error Probability Analysis for SISO Channels 4.2 Error Probability Analysis for MIMO Channels 4.2.1 Pairwise Error Probability and Union Bound 4.2.2 Coherent Maximum-Likelihood Detection 4.2.3 Detection with Imperfect Channel Knowledge 4.2.4 Joint ML Estimation/Detection 4.3 Summary and Discussion 4.4 Proofs 4.5 Problems 5 RECEIVE DIVERSITY 5.1 Flat Channels 5.2 Frequency-Selective Channels 5.2.1 Transmission with Known Preamble and Postamble 5.2.2 Orthogonal Frequency Division Multiplexing 5.3 Summary and Discussion 5.4 Problems 6 TRANSMIT DIVERSITY AND SPACE-TIME CODING 6.1 Optimal Beamforming with Channel Known at Transmitter 6.2 Achieving Transmit Diversity 6.2.1 The ML Detector 6.2.2 Minimizing the Conditional Error Probability 6.2.3 Minimizing the Average Error Probability 6.2.4 Discussion 6.3 Space-Time Coding 6.3.1 Alamouti’s Space-Time Code


22 22 25 27 28 30 33 34 36 38 40 40 43 44 44 48 49 51 52 57 60 60 63 64 70 75 76 79 79 82 83 84...
tracking img