# Notes Electric Charge and Electric Field

Pages: 8 (1713 words) Published: May 17, 2013
Electric Charge and Electric Field:->

1. Electric Charge

Electric charge is a fundamental property like mass, length etc associated with elementary particles for example electron, proton and many more.

Electric charge is the property responsible for electric forces which acts between nucleus and electron to bind the atom together.

Charges are of two kinds
(i) negative charge
(ii) positive charge

Electrons are negatively charged particles and protons, of which nucleus is made of, are positively charged particles. Actually nucleus is made of protons and neutrons but neutrons are uncharged particles.

electric force between two electrons is same as electric force between two protons kept at same distance apart i. e., both set repel each other but electric force between an electron and proton placed at same distance apart is not repulsive but attractive in nature.

Conclusion
(a) Like charges repel each other

(b) Unlike charges attract each other

Assignment of negative charge on electron and positive charge on proton is purely conventional , it does not mean that charge on electron is less than that on proton.

Importance of electric forces is that it encompasses almost each and every field associated with our life; being it matter made up of atoms or molecules in which electric charges are exactly balanced or adhesive forces of glue associated with surface tension, all are electric in nature.

Unit

Charge on a system can be measured by comparing it with the charge on a standard body.

SI unit of charge is Coulomb written as C.

1 Coulomb is the charge flowing through the wire in 1 second if the electric current in it is 1A.

Charge on electron is -1.602 × 10 -19 C and charge on proton is positive of this value.

2. Basic properties of electric charge

Charges adds up like real numbers i. e., they are Scalars more clearly if any system has n number of charges q1, q2, q3, qn then total charge of the system is q = q1 + q2 + q3 + ................ qn

Proper sign have to be used while adding the charges for example if q1 = +1C
q2 = -2C
q3 = +4C
then total charge of the system is
q = q1 + q2 + q3
q = (+1) + (-2) + (+4) C
q = (+3) C

(ii) Charge is conserved

Charge of an isolated system is conserved.

Chage can not be created or destroyed but charged particles can be created or destroyed.

(iii) Quantization of charge

All free charges are integral multiples of a unit of charge e, where e = -1.602 × 10 -19 C i. e., charge on an electron or proton.

Thus charge q on a body is always denoted by
q = ne
where n = any integer positive or negative

3. Frictional Electricity

If we pass a comb through hairs, comb becomes electrically charged and can attract small pieces of paper.

Many such solid materials are known which on rubbing attract light objects like light feather, bits of papers, straw etc.

Explaination of appearance of electric charge on rubbing is simple.

Material bodies consists of large number of electrons and protons in equal number and hence is in neutral in their normal state. But when the body is rubbed for example when a glass rod is rubbed with silk cloth, electrons are transferred from glass rod to silk cloth. The glass rod becomes positively charged and the silk cloth becomes negatively charged as it recieves extra electrons from the glass rod.

In this case rod after rubbing, comb after passing through dry hairs becomes electrified and these are the example of frictional electricity.

4. Coulumb's law

Coulomb's law is the law of forces between electric charges. Statement
" It states that two stationary point charges q1 and q2 repel or attract each other with a force F which is directly proportional to the product of charges and inversly proportional to the square of distance between them."

This dependence can be expressed by writing
F∝ q1q2
r2...