ma1506

Good Essays
Topics: Trigraph
MA1506 Tutorial 3 Solutions
(1a)
y"+6 y '+9 y = 0

Set y = e λt

λ2 + 6λ + 9 = 0 → λ = −3
→ y = ( A + Bx)e −3 x → y ' = Be −3 x − 3( A + Bx)e −3 x y (0) = 1 ⇒ A = 1 y ' (0) = −1 ⇒ B − 3 A = −1 ⇒ B = 2 → y = (1 + 2 x)e −3 x
(1b)
λ2 − 2λ + (1 + 4π 2 ) = 0 → λ = 1 ± 2πi
→ y = e x [ A cos 2πx + B sin 2πx] y ' = y + e x [−2πA sin 2πx + 2πB cos 2πx] y (0) = −2 ⇒ A = −2 y ' (0) = 2(3π − 1) ⇒ 2(3π − 1) = −2 + 2πB
⇒ B = 3 ⇒ y = e x [−2 cos 2πx + 3 sin 2πx]

(2a)
Try y = Ax 2 + Bx + C y "+2 y '+10 y
= 2 A + 2( 2 Ax + B ) + 10( Ax 2 + Bx + C )
= 25 x 2 + 3
→ 10 A = 25, 4 A + 10B = 0, 2 A + 2B + 10C = 3
→ A = 5 / 2, B = -1, C = 0
5
→ y = x2 − x
2

(2b)
Try y = ( Ax 2 + Bx + C )e 3 x y ' = (2 Ax + B)e 3 x + 3( Ax 2 + Bx + C )e 3 x y" = 2 Ae 3 x + 3(2 Ax + B)e 3 x + 3(2 Ax + B)e 3 x + 9( Ax 2 + Bx + C )e 3 x
9 A − 18 A + 8 A = 1 → A = −1
6 A + 6 A + 9 B − 12 A − 18 B + 8 B = 0 → B = 0
2 A + 3B + 3B + 9C − 6 B − 18C + 8C = 0 → C = −2 y = (− x 2 − 2)e 3 x

(2c) y"− y = 2 x Im e ix

(Im = imaginary part)

if we can solve the complex equation z"-z = 2xe ix then Imz satisfies the above.
Try z = (Ax + B)e ix z' = Ae ix + i(Ax + B)e ix z" = Aie ix + iAe ix − ( Ax + B )e ix z"− z = (2 Ai − Ax − B − Ax − B )e ix = 2 xe ix
→ A = −1
− 2i − 2 B = 0 → B = −i
→ z = (− x − i )e ix = − x cos x + sin x + i[− cos x − x sin x]
Im z = − cos x − x sin x → y = − cos x − x sin x

(2d)
1
1 1
(1 − cos 2 x) = − Re(e 2ix )
2
2 2
1 1
Solve z"+4z = − e 2ix ⇔ Try z = A + Bxe 2ix
2 2
2 ix z" = -4Bxe + 4iBe 2ix → z"+4 z = −4 Bxe 2ix + 4 A + 4 Bxe 2ix + 4iBe 2ix y"+4 y =

→ 4A =

1
1
→ A=
2
8

1
1
= 4iB → B = i
2
8
1 1 2ix 1 z = + ixe = (1 + x(i cos 2 x − sin 2 x))
8 8
8
1 1 y = Re z = − x sin 2 x
8 8

→−

(3a)
Variation of parameters : first solve y"+4y = 0 → y = Acos2x + Bsin2x
Promote A and B to functions A(x), B(x).
Then A(x)cos(2x) + B(x)sin2x is a solution of y"+4y =

1
(1 − cos 2 x)
2

if A(x) and B(x) are

You May Also Find These Documents Helpful

  • Powerful Essays

    Ma1506 Leture Notes

    • 4824 Words
    • 20 Pages

    MA1506 LECTURE NOTES CHAPTER 1 DIFFERENTIAL EQUATIONS 1.1 Introduction A differential equation is an equation that contains one or more derivatives of a differentiable function. [In this chapter we deal only with ordinary DEs, NOT partial DEs.] The order of a d.e. is the order of the equation’s highest order derivative; and a d.e. is linear if it can be put in the form any (n)(x)+an−1y (n−1)(x)+· · ·+a1y (1)(x)+a0y(x) = F, 1 where ai, 0 ≤ i ≤ n, and F are all functions of x. For example…

    • 4824 Words
    • 20 Pages
    Powerful Essays
  • Powerful Essays

    Cs1010E

    • 1015 Words
    • 5 Pages

    MA1506 Mathematics II 2010/2011 Semester 2 Instructions for Lab Component/Assignment The lab component for the module will consist of three self-study sessions and one assignment which will count towards 5% of your final grade. Aim: Students are expected to learn basic skills in one of the following scientific computation software: MATLAB or scilab, and make use of the software to graph and solve mathematical problems involving differential equations and linear algebra. Deadline for submission of…

    • 1015 Words
    • 5 Pages
    Powerful Essays
  • Satisfactory Essays

    Nus Ee Course Structure

    • 1011 Words
    • 5 Pages

    Unrestricted Elective Requirements MA1506 Mathematics II 2 Breadths CS1010E Programming Methodology 1 Singapore Studies Any modules for which you satisfy the prerequisites (may be modules related to your minor or double major programmes) PC2232 Physics for EE EE Inner Core Modules EE Project Modules EE Technical Electives 10 MCs 114 MCs 20 MCs 16 MCs Total = 160 MCs for graduation Compulsory Modules under Programme Requirements MA1505 Mathematics I MA1506 Mathematics II CS1010E Programming…

    • 1011 Words
    • 5 Pages
    Satisfactory Essays
  • Good Essays

    Mat 540 Final

    • 783 Words
    • 4 Pages

    MA1506 TUTORIAL 1 1. Solve the following differential equations: (a) x(x + 1)y = 1 (b) (sec(x))y = cos(5x) (c) y = e(x−3y) (d) (1 + y)y + (1 − 2x)y 2 = 0 Use www.graphmatica.com to sketch the functions you found as solutions of [a]-[d], if y = 1/2 at x = 1. Graphmatica can also directly sketch the graph if you insert the equation itself; for example, in [a] you just enter x(x + 1)dy = 1 {1, 1/2}. [curly brackets for the initial conditions, with x followed by y.] Here dy represents…

    • 783 Words
    • 4 Pages
    Good Essays