Preview

ELASTIC DEFORMATION AND POISSON’S RATIO

Powerful Essays
Open Document
Open Document
4723 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
ELASTIC DEFORMATION AND POISSON’S RATIO
ELASTIC DEFORMATION
AND
POISSON’S RATIO

E 45 – Materials, Friday 8:00 am
September 21, 2012

Due: October 19, 2012
Abstract
A tensile test was performed on a 4140 steel sample and the axial and transverse strains were measured. Data points were collected at incremental loads and graphed to determine the elastic modulus (30.4 x 106). Poisson’s ratio was also calculated from the dataset and determined to be 0.29. These experimental values agree closely (within 2%) to the textbook values of the steel sample. A sample of 7075 Aluminum was used in a cantilever beam test. Intermediate and end loads were place on the sample and the strain was measured at various distances from the loads. Using the dataset from the individual loads, the superposition strain was calculated and agreed within 7% of the experimental strain with both loads. From the measured deflection of the cantilever beam and the dataset, Young’s Modulus for the aluminum sample was determined to be 9.1x106 psi which agrees within 8% of the textbook value.
Introduction
To be able to decide on what kind of material to choose for product design, there are some critical characteristics you must consider in choosing a material prior to manufacturing. Characteristics such as material strength and flexibility are two tests that have been done on common materials for architects and engineers to reference during the design process. The purpose of this lab is to produce an elastic modulus of a material, and a predicted yield strength. Stress and strain data will be produced through tensile testing and cantilever beam testing.
For a tensile test, two strain gages will be attached to the material to measure the longitudinal strain and transverse stain. The percent elongation of the specimen is directly proportional to the change in longitudinal strain. With the dimensions of the original specimen, the change in these strains can tell us the

You May Also Find These Documents Helpful

  • Good Essays

    Cpccbc4010A Assessment 1

    • 1237 Words
    • 5 Pages

    Tensile strength is measured in mega Pascals it is the strength of the materials against failure under pulling of the load.…

    • 1237 Words
    • 5 Pages
    Good Essays
  • Better Essays

    Steel 1045 Final Report

    • 1478 Words
    • 6 Pages

    Out of the three materials tested, the steel 1045 exhibited the most elastic properties, with it being able to deform elastically for a greater amount of stress than for the other specimens, as indicated by its stress-strain curve as shown in figure 1, and further supported by it having the highest modulus of elasticity of all three specimens, as shown in table 2. The mild steel specimen had the second greatest modulus of elasticity, and the aluminium specimen had the lowest modulus of…

    • 1478 Words
    • 6 Pages
    Better Essays
  • Satisfactory Essays

    By shifting the cross-sectional area of the sections and then smearing a uniaxial load on each one, we can find the values of displacement at maximum tensile strength.…

    • 373 Words
    • 2 Pages
    Satisfactory Essays
  • Good Essays

    Bone Mechanics

    • 504 Words
    • 7 Pages

    In this lab the strain response of two different materials were measured as stress was applied to them. The materials were an aluminum rod and a chicken bone. Strain (ᵋ) is the change of length of the material over the initial length.…

    • 504 Words
    • 7 Pages
    Good Essays
  • Good Essays

    Syllabus Spring 2013

    • 638 Words
    • 3 Pages

    investigated with a view towards materials selection and design. Skills emphasized: experimental technique, statistical analysis of data, and…

    • 638 Words
    • 3 Pages
    Good Essays
  • Powerful Essays

    In this experiment the main aim was to modelling a frame subjected to multiple loading conditions and record how the force and strain vary to different loads. The frame represented a simple roof trusses and the loading conditions are similar to what a typical roof would undergo. In this experiment a universal fame was used with load cells to provide the load and digital force and strain instruments to record the data. As the load was increased the strain went up linear showing a linear relationship between loading and strain. After analysing results it was found that the results for experimental forces compared to theoretical forces were very close showing that this experiment was very accurate, with very small uncertainty, the reason for this is due to very sensitive equipment as a change of 1µϵ is equivalent to change of 6 N (using young’s modulus) and other factors described in detail in the report.…

    • 1337 Words
    • 39 Pages
    Powerful Essays
  • Satisfactory Essays

    18. A cylindrical specimen of aluminum having a diameter of 12mm and a gauge length of 50 mm is pulled in tension. Use the load–elongation characteristics in Table 2 Plot the data as engineering stress versus engineering strain and Compute the modulus of elasticity, yield strength at a strain offset of 0.002,tensile strength of this alloy, modulus of resilience and ductility in terms of percent elongation.…

    • 607 Words
    • 3 Pages
    Satisfactory Essays
  • Powerful Essays

    An investigation into beam bending and superposition. Being able to analyse how beams bend is an essential tool for all engineers. By using mathematics and material properties, engineers are able to compute structural deformation thus verifying a structures fitness for use. In this experiment a simply supported beam of aluminium is loaded with point forces in three different cases. A clock gauge is positioned in the middle of the beam to measure the deflection. The results of a complex arrangement of forces can be deduced by the superposition of more simple cases. Superposition is possible only when the response of the structure is linear, e.g. when deflection is directly proportional to the applied load. Also the experimental and theoretical deflections of the beam will be compared and a percentage error obtained. There was a second test performed in this investigation demonstrating the influence the 2nd moment of area, also known as the second moment of inertia, had on the load carrying capacity of the beam. The results from test 1 show that it is possible to deduce the deflection of the beam when loaded with point forces by superposition. Results from test 2 show that the deflection of a beam is influenced greatly by its moment of inertia, i.e. with a greater value of inertia there is a smaller deflection.…

    • 2138 Words
    • 9 Pages
    Powerful Essays
  • Satisfactory Essays

    resist changes in its sturdiness and durability. It also characterizes a metal’s ability to stretch.…

    • 427 Words
    • 1 Page
    Satisfactory Essays
  • Powerful Essays

    Statics Lab

    • 1209 Words
    • 8 Pages

    of the material had not exceeded its elastic limit. Any deformation caused by further increases in…

    • 1209 Words
    • 8 Pages
    Powerful Essays
  • Powerful Essays

    2. Determine the following mechanical properties from the stress-strain curve for each of the specimens (by graphical method), and summarize these properties in a table. Sample calculation is to be included in the Appendix.…

    • 563 Words
    • 3 Pages
    Powerful Essays
  • Powerful Essays

    The tensile strength of a material quantifies how much stress the material will endure before failing. This is very important in applications that rely upon a polymer 's physical strength or durability. For example, a rubber band with a higher tensile strength will hold a greater weight before snapping. The tensile test consists on the application of a tensile stress on a chosen specimen attached to a device that calculates the force applied on it and the elongation. Polymers or plastic as they are commonly known, consist of long molecular chains of carbon compounds. This type of long chain structure of the plastics or polymers give it special properties that may not be exist in metals. It’s very easy to change the shape of polymers because they are light and corrosion resistant. Additionally in the pure state all polymers are colourless and easy to produce any coloured products by the addition of dyes and pigments. Polymer`s physical, mechanical and electrical properties depends on its structure, temperature and bonds between the monomers.…

    • 2341 Words
    • 10 Pages
    Powerful Essays
  • Good Essays

    The paper is about the rules of mixtures which are used to express the dependencies of the physical properties and mechanical properties which depend on type, form, quality and arrangement of its constituents, but they are based on various assumptions so one should with caution, especially if they are used anything more than preliminary design. The paper mainly concentrates on expressions for elastic properties which are as follows:…

    • 541 Words
    • 3 Pages
    Good Essays
  • Powerful Essays

    Also, to compare the maximum deformation, stress and error estimation of cantilevered in the two cases by generating the deformed shape plot, the von Mises stress plot and structural energy error plot.…

    • 1432 Words
    • 6 Pages
    Powerful Essays
  • Better Essays

    1.) In this lab, concrete cylinders and beams created from Lab 3 were tested for compressive, flexural, and tensile strength. The compressive strength of the concrete was found by applying an axial load on the cylinder until the cylinder failed. The flexural strength was calculated by subjecting transverse loads at the third points of the beam until failure. The tensile strength of concrete was found from applying a uniform line load along the length of the cylinder until failure. The failure loads of the concrete samples and other raw data from testing was collected onto tables and placed in Appendix A. The notation used throughout the report is shown in Appendix B. Engineering equations used to analyze the data are shown in Appendix C.…

    • 1620 Words
    • 7 Pages
    Better Essays

Related Topics