Preview

A Practical Equation for Elastic Modulus of Concrete

Good Essays
Open Document
Open Document
2667 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
A Practical Equation for Elastic Modulus of Concrete
ACI STRUCTURAL JOURNAL
Title no. 106-S64

TECHNICAL PAPER

A Practical Equation for Elastic Modulus of Concrete by Takafumi Noguchi, Fuminori Tomosawa, Kamran M. Nemati, Bernardino M. Chiaia, and Alessandro P. Fantilli
Many empirical equations for predicting the modulus of elasticity as a function of compressive strength can be found in the current literature. They are obtained from experiments performed on a restricted number of concrete specimens subjected to uniaxial compression. Thus, the existing equations cannot cover the entire experimental data. This is due to the fact that mechanical properties of concrete are highly dependent on the types and proportions of binders and aggregates. To introduce a new reliable formula, more than 3000 data sets, obtained by many investigators using various materials, have been collected and analyzed statistically. The compressive strengths of the considered concretes range from 40 to 160 MPa (5.8 to 23.2 ksi). As a result, a practical and universal equation, which also takes into consideration the types of coarse aggregates and mineral admixtures, is proposed.
Keywords: analysis; coarse aggregates; compressive strength; highstrength concrete; modulus of elasticity; normal-strength concrete; watercement ratio.

subjected to uniaxial compression are currently used for evaluating E. From these tests, the current building codes propose more or less similar empirical formulas for the estimation of elastic modulus. Because they are directed to designers, the possible equations need to be formulated as functions of the parameters known at the design stage.9 Thus, for both normal-strength (NSC) and high-strength (HSC) concrete, the Comité Euro-International du Béton and the Fédération Internationale de la Précontrainte (CEB-FIP) Model Code10 and Eurocode 211 link the elastic modulus E to the compressive strength σB according to σB 3 E = 22,000 ⎛ ----- ⎞ ⎝ 10⎠ σB 3 E = 3191 ⎛ --------- ⎞ ⎝ 1.45⎠
1 -1 --

(1a)

You May Also Find These Documents Helpful

  • Powerful Essays

    Kojiki, Norito, ed. Kurano Kenji and Takeda Yiikichi (Tokyo: Iwanami shoten, 1958), pp. 216f., 246f., 280f., 320f. Web. 13 Feb. 2013.…

    • 1300 Words
    • 6 Pages
    Powerful Essays
  • Powerful Essays

    For concrete is a mixture of coarse (stone or brick chips) and fine (generally sand or crushed stone) aggregates with a binder material like usually Portland cement. When mixed with a small amount of water, the cement hydrates to form microscopic opaque crystal lattices encapsulating and locking the aggregate into a rigid structure. Typical concrete mixes have high resistance to compressive stresses about 28 MPa. However, any appreciable tension (due to bending) will break the microscopic rigid lattice, resulting in cracking and separation of the concrete. For this reason, typical non-reinforced concrete must be well supported to prevent the development of tension.…

    • 7570 Words
    • 31 Pages
    Powerful Essays
  • Better Essays

    SEAOC (2005), “Design of concrete slabs as seismic collectors,” Seismology and Structural Standards Committee, Structural Engineers Association of California, 15 pp.…

    • 3505 Words
    • 15 Pages
    Better Essays
  • Powerful Essays

    up of one or more curved slabs or folded plates whose thicknesses are small compared to their other dimensions. Thin shells are characterized by their three-dimensional loadcarrying behavior, which is determined by the geometry of their forms, by the manner in which they are supported, and by the nature of the applied load.” Concrete shell structures are able to span large distances with a minimal amount of material. An arch, spanning tens of feet, can be mere inches thick. In maintaining this economy of material, these forms have a light, aesthetic, sculptural appeal. I am planning on designing and constructing a thin shell concrete structure for my senior design project. The structure constructed would be at a maximum size, ten feet by ten feet, which may be scaled down if necessary during the design phase. I will be working on this project with Rebecca Burrow who is assisting as part of a directed reading arranged through Professor Siddiqui. Rebecca is currently abroad. Thin shell concrete structures are pure compression structures formed from inverse catenary shapes. Catenary shapes are those taken by string or fabric when allowed to hang freely under their own weight. As string can bear no compression, the free hanging form is in pure tension. The inverse of this form is a pure compression structure. Pure compression is ideal for concrete as concrete has high compressive strength and very low tensile strength. These shapes maximize the effectiveness of concrete, allowing it to form thin light spans.…

    • 2896 Words
    • 12 Pages
    Powerful Essays
  • Powerful Essays

    This report describes a compression test on concrete columns. The main aim of the tests was to illustrate the ultimate strength limit state of reinforced concrete columns in combined bending and compression and to demonstrate the influence of slenderness on the ultimate load capacity. Test methods are described. It was found that the concrete columns exhibited complicated behaviour, and had a squash load point of 342.7KN and moment at 0 KN.m, a decompression point of 227.75 KN and moment at 2.92 KN.m, a balanced point (nominal) of 58.46 KN and moment at 3.81KN.m, a pure bending point of 0 KN and moment at 2.86 KN.m, a balanced point (actual) of 42.26KN and moment at 3.86KN.m.…

    • 2017 Words
    • 9 Pages
    Powerful Essays
  • Better Essays

    The splitting tests are well known indirect tests, were conducted as per IS 5816:1999 and used in the concrete tensile strength determination sometimes called split tensile strength of concrete. The size of cylinder is 300mm length with 150mm diameter or 200mm with 100mm diameter. The specimen were kept in water for curing for 3 days, 7 days and 21 days and on test day remove and allow the surface to dry. The test is performed out by placing a cylindrical specimen horizontally between the loading surfaces of a compression testing machine and the load is applied until failure of the cylinder along the vertical diameter occurs, record the maximum load applied to the specimen and note the appearance of the concrete for any…

    • 1137 Words
    • 5 Pages
    Better Essays
  • Powerful Essays

    Agbede, I. O., &Obam, S. O. (2008). Compressive Strength of Rice Husk Ash-CementSandcrete Blocks.Global Journal of…

    • 4288 Words
    • 32 Pages
    Powerful Essays
  • Good Essays

    Box Type Building

    • 6805 Words
    • 28 Pages

    Publication no. 42, American Concrete Institute: Detroit, MI. Paulay T, Priestley MJN. 1991. Seismic Design of Reinforced Concrete and Masonry Buildings. Wiley: New York. Popovics S. 1973. A numerical approach to the complete stress–strain curve for concrete. Cement and Concrete Research 3(5): 583–599. Rüsch H, Hilsdorf H. 1963. Verformungseigenschaften von Beton Unter Zwischen Zugspannangen. Report No. 44, Materialprüfungsamt für das Bauwesen der Technischen Hochschule München. Saatçioglu M, Ravzi SR. 1992. Strength and ductility of confined concrete. Journal of Structural Engineering, ˇ ASCE 118(6): 1590–1607. Takacs PF, Kanstad T. 2000. Strengthening prestressed concrete beams with carbon fiber reinforced polymer plates. NTNU Report: R-9-00. Trondheim, Norway. Thorenfeldt E, Tomaszewicz A, Jensen JJ. 1987. Mechanical properties of high strength concrete and application in design. In Proceedings of the Symposium on Utilization of High Strength Concrete, Stavanger, Norway, June. Tapit: Trondheim; 149–159. TNO DIANA. 2004. TNO Building Construction and Research. Delft, The Netherlands. TSC. 1998. Turkish Seismic Code (TSC1998): Specifications for the Structures to be Built in Disaster Regions. Ministry of Public Work and Settlement: Ankara. UBC. 1997. International Conference of Building Officials (ICBO) 1997. Uniform Building Code: Whittier, CA. Wood SL, Stark R, Greer SA. 1991. Collapse of eight-story RC building during 1985 Chile earthquake. Journal of Structural Engineering, ASCE 117(2): 600–619. Yüksel SB. 2003. A moment–curvature program for structural walls. Journal of Engineering and Architecture, Faculty of Selçuk University 18(1): 75–84. Yüksel SB. 2007. Slit connected coupling beams for tunnel form building structures. Structural Design of Tall Buildings (in press). Yüksel SB, Kalkan E. 2007. Behavior of tunnel form buildings under quasi-static cyclic lateral loading. Structural Engineering and Mechanics (in press).…

    • 6805 Words
    • 28 Pages
    Good Essays
  • Satisfactory Essays

    Structural Design

    • 1655 Words
    • 7 Pages

    For mild condition by using Table 3.2 and Table 3.3 of BS8110 the thickness of the concrete cover is 25mm and link size are as assumed in the Solution…

    • 1655 Words
    • 7 Pages
    Satisfactory Essays
  • Good Essays

    Aggregate is one of the basic constituents of concrete. Its quality is of considerable importance because about three-quarter of the volume of concrete is occupied by aggregates. One of the physical properties of aggregate that influence the property of concrete is the grading of aggregate. The grading of aggregate defines the proportions of particles of different size in the aggregate. The grading of fine (size < 5 mm) and coarse (size > 5 mm) aggregates are generally required to be within the limits specified in BS 882: 1992.…

    • 1066 Words
    • 5 Pages
    Good Essays
  • Good Essays

    5. Results: Compressive Strength of Concrete Structures Using Schmidt Hammer DATA AND CALCULATION SHEET Sample Identification: R14 floor Description: Sample age at test: Element type: Application Direction | | | | Rebound number readings | 26 | 29 | 24 | 32 | 26 | | 31 | 32 | 34 | 22 | 30 | Average Rebound Number | (1) 29 | Estimated compressive strength (MPa) | (2) 28 MPa | Compressive Strength of Cube Concrete Specimens DATA AND CALCULATION SHEET Sample Identification: R14 cube Description: Sample | 1 | Width (mm) | 103.5 | 99.3 | Depth (mm) | 99.4 | 101.1 | Average Width W (mm) | (3) 101.4 | Average Depth D (mm) | (4) 100.3 | Cross section area…

    • 462 Words
    • 2 Pages
    Good Essays
  • Powerful Essays

    Cover Meter Test

    • 1478 Words
    • 6 Pages

    References: Rao, K. 1949. Calculation, design and testing of reinforced concrete. London: Pitman & Sons.…

    • 1478 Words
    • 6 Pages
    Powerful Essays
  • Satisfactory Essays

    Bored Pile Calculation

    • 2727 Words
    • 11 Pages

    Compressive Strength for Pilecap Compressive Strength of Pile Concrete Density Weight of each Pile Allowable Tension Force of Pile Capacity Depth of Water Table from Ground Surface Thickness of Concrete Cover…

    • 2727 Words
    • 11 Pages
    Satisfactory Essays
  • Good Essays

    Imagine a footbridge as long as a football field with a platform as thick as your hand. Or a 6’ x 10’ sheet just 1 inch thick that bends as it continues to support a 2,000 lb car. Working in collaboration with Rhodia and Bouygues, Lafarge has developed a whole new family of concretes called Ductal. These concretes have high compressive and flexural strength, and their special characteristics enable the achievement of outstanding architectural feats. Ductal concrete incorporates strengthening fibers and opens the horizon to ultra-high performance due to its special composition which provides it with outstanding strength, six to eight times greater than traditional concrete (under compression). “Fiber-reinforced” means that it contains metal fibers which make it a ductile material. Highly resistant to bending, its great flexural strength means it can withstand significant transformations without breaking. Ductal also comes with organic fibers for applications with less load and for architectonic applications…

    • 1089 Words
    • 5 Pages
    Good Essays
  • Good Essays

    Task-1 1.1 Explain the quality control testing before you allow starting the concreting work for the foundation, columns, slab and beams. There are two main tests to be done on concrete The slump test: the slump test shows the workability of concrete. The compression test: the compression test shows the best possible strength Concrete can reach in perfect conditions. Testing should always be done carefully. Wrong test results can be costly. SAMPLING The first step is to take a test sample from the large batch of concrete. This should be done as soon as discharge of the concrete commences. The sample should be representative of the concrete supplied. The sample is taken in one of two ways: For purposes of accepting or rejecting the load: Sampling after 0.2 m3 of the load has been poured. For routine quality checks: Sampling from three places in the load.…

    • 6544 Words
    • 27 Pages
    Good Essays

Related Topics