Thermodynamic Analysis and Performance Characteristics of a Turbofan Jet Engine

Only available on StudyMode
  • Topic: Jet engine, Turbofan, Turbine
  • Pages : 72 (24057 words )
  • Download(s) : 255
  • Published : November 23, 2012
Open Document
Text Preview
AEROSPACE ENGINEERING

SCHOOL OF MECHANICAL ENGINEERING AND DESIGN

THE THERMODYNAMIC ANALYSIS AND PERFORMANCE CHARACTRISTICS OF A TURBOFAN JET ENGINE

By J. E, Ibok
2011
Supervisor: Dr Lionel Ganippa

ABSTRACT
This work focuses on the performance analysis of a twin spool mixed flow turbofan engine. The main objective was to investigate the effects of using hydrogen, kerosene and natural gas fuel on the performance characteristics such as net thrust, specific fuel consumption and propulsive efficiency of the turbofan. Another aim of this work was to introduce the concept of exergy and thermoeconomics analysis for twin spool mixed flow turbofan engine and show the components that contributes the most to the inefficiency of the engine. A generic simulation was carried out using Gas Turb 11 software to obtain reasonable analysis results that were verified with a real-time JT8D-15A turbofan engine. The parametric analysis was done for constant value of mass flow rate of fuel and constant turbine inlet temperature for all three fuels. The result were rightfully obtained for these analysis cases and discussed accordingly.

Brunel University
Mechanical Engineering Academic Session: 2010/2011 Name of Student: Johnson Essien Ibok Supervisor:Dr Lionel Ganippa Title: The Performance Characteristics and Thermodynamics Exergy and Thermoeconomics analysis of a Twin Spool Mixed Flow Turbofan Engine Operating at 30,000ft at M0 0.8 using Kerosene, natural Gas and Hydrogen Fuel. Abstract: This work focuses on the performance analysis of a twin spool mixed flow turbofan engine. A generic simulation was carried out using Gas Turb 11 software to obtain reasonable analysis results that were verified with a real-time JT8D-15A turbofan engine. The parametric analysis was done for constant value of mass flow rate of fuel and constant turbine inlet temperature for all three fuels. The result were rightfully obtained for these analysis cases and discussed accordingly. Objectives: The main aim of this work is to conduct the parametric cycle simulation of a twin spool mixed flow turbofan engine and investigate the performance characteristics of it. Another aim of this work is to show the effects of using hydrogen, Kerosene and natural gas fuel on the overall performance of the twin spool mixed flow turbofan engine. Also, the purpose of this work is to introduce the use of the second law of thermodynamics analysis known as exergy and thermoeconomics in analysis the twin spool mixed flow turbofan engine Background/Applications: This work is applicable in so many ways when it comes to the overall performance optimization and feasibility analysis of a jet engine. This work relates to the aerospace and aviation industries since the turbofan engine is amongst the vast number of jet engine used in propulsion of aircrafts. There is increasing pressure in the aviation industry to reduce pollution and depletion of energy resources while at the same time maintaining reasonable investment cost and high overall performance. Hence, this research was conducted in hopes of coming up with a new solution to this problem. Conclusions: The main conclusion drawn from the performance analysis is that hydrogen fuel produced the highest thrust level and the lowest specific fuel consumption between the three fuels for a constant mass flow rate of fuel. Kerosene fuel generated thrust level can be increased if it is mixed with a small amount of hydrogen. The Exit jet velocity ratio remained constant despite the increasing bypass ratio for all three fuels at constant mass flow rate of fuel. Using the exergetic analysis showed that the combustion chamber and the mixer contributed the most to the inefficiency of...
tracking img