The first trigonometric table was apparently compiled by Hipparchus, who is now consequently known as "the father of trigonometry."[3] Sumerian astronomers introduced angle measure, using a division of circles into 360 degrees.[4]They and their successors the Babylonians studied the ratios of the sides of similar triangles and discovered some properties of these ratios, but did not turn that into a systematic method for finding sides and angles of triangles. The ancient Nubians used a similar methodology.[5] The ancient Greeks transformed trigonometry into an ordered science.[6] Classical Greek mathematicians (such as Euclid and Archimedes) studied the properties of chordsand inscribed angles in circles, and proved theorems that are equivalent to modern trigonometric formulae, although they presented them geometrically rather than algebraically. Claudius Ptolemyexpanded upon Hipparchus' Chords in a Circle in his Almagest.[7] The modern sine function was first defined in the Surya Siddhanta, and its properties were further documented by the 5th centuryIndian mathematician and astronomer Aryabhata.[8] These Greek and Indian works were translated and expanded by medieval Islamic mathematicians. By the 10th century, Islamic mathematicians were using all six trigonometric functions, had tabulated their values, and were applying them to problems in spherical geometry.[citation needed] At about the same time, Chinese mathematicians developed trigonometry independently, although it was not a major field of study for them. Knowledge of trigonometric functions and methods reached Europe via Latin translations of the works of Persian and Arabic astronomers such as Al Battani and Nasir alDin alTusi.[9] One of the earliest works on trigonometry by a European mathematician is De Triangulis by the 15th century German mathematicianRegiomontanus. Trigonometry was still so little known in 16th century Europe that Nicolaus Copernicus devoted two chapters of De revolutionibus orbium coelestium to explaining its basic concepts. Driven by the demands of navigation and the growing need for accurate maps of large areas, trigonometry grew to be a major branch of mathematics.[10] Bartholomaeus Pitiscus was the first to use the word, publishing his Trigonometria in 1595.[11] Gemma Frisiusdescribed for the first time the method of triangulation still used today in surveying. It was Leonhard Euler who fully incorporated complex numbers into trigonometry. The works of James Gregory in the 17th century and Colin Maclaurin in the 18th century were influential in the development of trigonometric series.[12] Also in the 18th century, Brook Taylor defined the general Taylor series.[13] [edit]Overview
In this right triangle: sin A = a/c; cos A = b/c;tan A = a/b. If one angle of a triangle is 90 degrees and one of the other angles is known, the third is thereby fixed, because the three angles of any triangle add up to 180 degrees. The two acute angles therefore add up to 90 degrees: they are complementary angles. Theshape of a triangle is completely determined, except for similarity, by the angles. Once the angles are known, the ratios of the sides are determined, regardless of the overall size of the triangle. If the length of one of the sides is known, the other two are determined. These ratios are given by the following trigonometric functions of the known angle A, where a, b and c refer to the lengths of the sides in the accompanying figure: Sine function (sin), defined as the ratio of the side opposite the angle to thehypotenuse.
Cosine function (cos), defined as the ratio of the adjacent leg to the hypotenuse.
Tangent function (tan), defined as the ratio of the opposite leg to the adjacent leg.
The hypotenuse is the side opposite to the 90 degree angle in a right triangle; it is the longest side of the triangle, and one of the two sides adjacent to angle A. The adjacent leg is the other side that is adjacent to angle A. The...
...Teaching trigonometry using Empirical Modelling
0303417
Abstract
The trigonometric functions sin(x), cos(x) and tan(x) are relationships that exist between the angles
and length of sides in a rightangled triangle. In Empirical Modelling terms, the angles in a triangle
and the length of the sides are observables, and the functions that connect them are the definitions.
These welldefined geometric relationships can be useful when teaching GCSElevel students about
the functions, as they provide a way to visualise what can be thought of as fairly abstract functions.
This paper looks at how different learning styles apply to Empirical Modelling, and presents a practical example of their use in a model to teach trigonometry.
1 Introduction
The trigonometric functions sin(x), cos(x) and tan(x)
are relationships that exist between the angles and
length of sides in a rightangled triangle. In Empirical Modelling terms, the angles in a triangle and the
length of the sides are observables, and the functions
that connect them are the definitions. These welldefined geometric relationships can be useful when
teaching GCSElevel students about the functions,
as they provide a way to visualise what can be
thought of as fairly abstract functions. Rather than
teaching students by showing them diagrams in an
instructive way (already a good way of doing it), a
constructive approach may allow students to gain a
better understanding...
...Trigonometry
 Introduction to trigonometryAs you see, the word itself refers to three angles  a reference to triangles. Trigonometry is primarily a branch of mathematics that deals with triangles, mostly right triangles. In particular the ratios and relationships between the triangle's sides and angles. It has two main ways of being used: 1. In geometryIn its geometry application, it is mainly used to solve triangles, usually right triangles. That is, given some angles and side lengths, we can find some or all the others. For example, in the figure below, knowing the height of the tree and the angle made when we look up at its top, we can calculate how far away it is (CB). (Using our full toolbox, we can actually calculate all three sides and all three angles of the right triangle ABC). 2. AnalyticallyIn a more advanced use, the trigonometric ratios such as as Sine and Tangent, are used as functions in equations and are manipulated using algebra. In this way, it has many engineering applications such as electronic circuits and mechanical engineering. In this analytical application, it deals with angles drawn on a coordinate plane, and can be used to analyze things like motion and waves. Chapter1Angles in the Quadrants( Some basic Concepts)In trigonometry, an angle is drawn in what is called the "standard position". The vertex of the angle is on the origin, and one side of the angle is fixed and drawn along the positive...
...Trigonometry (from Greek trigōnon "triangle" + metron"measure"[1]) is a branch of mathematics that studies triangles and the relationships between their sides and the angles between these sides. Trigonometry defines the trigonometric functions, which describe those relationships and have applicability to cyclical phenomena, such as waves. The field evolved during the third century BC as a branch of geometry used extensively for astronomical studies.[2] It is also the foundation of the practical art of surveying.
Trigonometry basics are often taught in school either as a separate course or as part of a precalculus course. The trigonometric functions are pervasive in parts of pure mathematics and applied mathematics such as Fourier analysis and the wave equation, which are in turn essential to many branches of science and technology. Spherical trigonometry studies triangles on spheres, surfaces of constant positive curvature, in elliptic geometry. It is fundamental to astronomy and navigation. Trigonometry on surfaces of negative curvature is part of Hyperbolic geometry.


\History
Main article: History of trigonometry
The first trigonometric tablewas apparently compiled byHipparchus, who is now consequently known as "the father of trigonometry."[3]
Sumerian astronomers introduced angle measure, using a...
...Trigonometry (from Greek trigōnon "triangle" + metron "measure"[1]) is a branch of mathematics that studies triangles and the relationships between the lengths of their sides and the angles between those sides. Trigonometry defines the trigonometric functions, which describe those relationships and have applicability to cyclical phenomena, such as waves. The field evolved during the third century BC as a branch of geometry used extensively for astronomical studies.[2] It is also the foundation of the practical art of surveying.
Trigonometry basics are often taught in school either as a separate course or as part of a precalculus course. The trigonometric functions are pervasive in parts of pure mathematics and applied mathematics such as Fourier analysis and the wave equation, which are in turn essential to many branches of science and technology. Spherical trigonometry studies triangles on spheres, surfaces of constant positive curvature, in elliptic geometry. It is fundamental to astronomy and navigation. Trigonometry on surfaces of negative curvature is part of Hyperbolic geometry.
Contents
f one angle of a triangle is 90 degrees and one of the other angles is known, the third is thereby fixed, because the three angles of any triangle add up to 180 degrees. The two acute angles therefore add up to 90 degrees: they are complementary angles. The shape of a triangle is completely determined,...
...me to become independent. His advice is directly related to his history and experiences, and it has been with this which he has taught me discipline throughout my life. It is an honor to have such a father.
My father and I share the same birth place, but totally different upbringings. His childhood was dominated by my grandfather's poverty which nearly inhibited his formal education. If it was not for his prioritized ambition, his fate would be similar to his four brothers: fastened to the lower middle class tier in a third world country. He educated himself up the social ladder across the Pacific and into America. His persistence is aweinspiring, but more so is his retention. He literally taught me everything he knew, and that is what I idolize about him.
To my father, grades are everything. I still recollect the expensive summer grade books he bought in hope I would learn the next grade's material before hand, the long hours during weekends we sat on hard wood floors practicing mathematics, and watching our favorite nature shows on Discovery. The greatest influence was his bitter, unyielding tutoring. I always resisted it, and despised it, but now I am grateful. Through fifty problems a day, he taught me algebra, physics, patience, and zeal. My priceless time with my father has laid my academic foundation and to my passions of science and mathematics.
As I grew older, he became less involved with my...
...Amongst the lay public of nonmathematicians and nonscientists, trigonometry is known chiefly for its application to measurement problems, yet is also often used in ways that are far more subtle, such as its place in the theory of music; still other uses are more technical, such as in number theory. The mathematical topics of Fourier series and Fourier transforms rely heavily on knowledge of trigonometric functions and find application in a number of areas, including statistics.
There is an enormous number of applications of trigonometry and trigonometric functions. For instance, the technique of triangulation is used in astronomy to measure the distance to nearby stars, in geography to measure distances between landmarks, and in satellite navigation systems. The sine and cosine functions are fundamental to the theory of periodic functions such as those that describe sound and light waves.
Fields which make use of trigonometry or trigonometric functions include astronomy (especially, for locating the apparent positions of celestial objects, in which spherical trigonometry is essential) and hence navigation (on the oceans, in aircraft, and in space), music theory, acoustics, optics, analysis of financial markets, electronics, probability theory, statistics, biology, medical imaging (CAT scans and ultrasound), pharmacy, chemistry, number theory (and hence cryptology), seismology, meteorology, oceanography, many...
...THE DEFINITION ESSAY EXPLANATION PART I
One of the main goals of our definition assignment unit is to practice and learn how to make an argument. Yes!
A definition of an abstract concept can be thought of as an argument that you make. “Why? How?” you ask.
Think about it this way: when you define an abstract concept you are arguing YOUR DEFINITION is the best
definition of that term and you have to convince the reader of that by showing and developing your points. Take
the abstract term “courage:”
I might say, “Courage is not being afraid of anything.”
This is one definition of courage. It is a fairly common definition of courage and thus, it wouldn’t make a very
unique definition paper. However, another person might say:
“Courage is being afraid of something and doing it anyway.”
This is a less common definition of courage. The two definitions are mutually exclusive; they are almost the
opposite of each other. Because we can possibly make a case for and against each of these definitions, then we
have a debatable position of the concept or topic at hand. If we have a debatable position, then our development
of our position will be an argument. (For the definition essay, the definition that you choose as the best
definition of the term is the thesis statement of your paper. More on this later).
Remember that we are not looking for technical definitions of concrete things. We all can agree on the definition
of table, bed, horse, etc. We are instead going to be...
...REPORT…
“THE FATHER”
By: Bjornstjerne Bjornson
aBorn  8 December 1832
Kvikne, Norway 
Died  26 April 1910 (aged 77)
Paris, France 
Occupation  Poet, novelist, playwright, lyricist 
Nationality  Norwegian 
Notable award(s)  Nobel Prize in Literature
1903 
•was the son of a Norwegian pastor
•was a Norwegian writer and the 1903 Nobel Prize in Literature laureate.
•is considered as one of The Four Greats Norwegian writers; the others being Henrik Ibsen, Jonas Lie, and Alexander Kielland.
Summary
The Short Story Father is about a man who was the wealthiest and most influential person in his parish. A peasant, Thord Overaas, visits his priest four times.
The first time he asks that his son, Finn, be baptized by himself. Sixteen years later Thord pays the priest ten dollars, for Finn to stand first for communion.
Third when Thord requested that the banns may be published for his son when he is about to marry Karen Storliden, daughter of Gudmund, the riches girl in parish. Thord pays the priest three dollars.
Soon the father and son were rowing across the lake, to Storliden to make arrangements for the wedding.
His son stood up to straighten the seat in which he was sitting but suddenly the board slipped under him and fell.
Thord visits the priest for the last time but not for his pleasures now. Thord has sold his farm, and presents half of its price to be given to the poor.
Characters...
{"hostname":"studymode.com","essaysImgCdnUrl":"\/\/imagesstudy.netdnassl.com\/pi\/","useDefaultThumbs":true,"defaultThumbImgs":["\/\/stmstudy.netdnassl.com\/stm\/images\/placeholders\/default_paper_1.png","\/\/stmstudy.netdnassl.com\/stm\/images\/placeholders\/default_paper_2.png","\/\/stmstudy.netdnassl.com\/stm\/images\/placeholders\/default_paper_3.png","\/\/stmstudy.netdnassl.com\/stm\/images\/placeholders\/default_paper_4.png","\/\/stmstudy.netdnassl.com\/stm\/images\/placeholders\/default_paper_5.png"],"thumb_default_size":"160x220","thumb_ac_size":"80x110","isPayOrJoin":false,"essayUpload":false,"site_id":1,"autoComplete":false,"isPremiumCountry":false,"userCountryCode":"US","logPixelPath":"\/\/www.smhpix.com\/pixel.gif","tracking_url":"\/\/www.smhpix.com\/pixel.gif","cookies":{"unlimitedBanner":"off"},"essay":{"essayId":35996452,"categoryName":"Authors","categoryParentId":"17","currentPage":1,"format":"text","pageMeta":{"text":{"startPage":1,"endPage":12,"pageRange":"112","totalPages":12}},"access":"premium","title":"The Father of Trigonometry","additionalIds":[19,13,7,214],"additional":["Natural Sciences","Health \u0026 Medicine","Education","Natural Sciences\/Astronomy"],"loadedPages":{"html":[],"text":[1,2,3,4,5,6,7,8,9,10,11,12]}},"user":null,"canonicalUrl":"http:\/\/www.studymode.com\/essays\/TheFatherOfTrigonometry1074281.html","pagesPerLoad":50,"userType":"member_guest","ct":10,"ndocs":"1,500,000","pdocs":"6,000","cc":"10_PERCENT_1MO_AND_6MO","signUpUrl":"https:\/\/www.studymode.com\/signup\/","joinUrl":"https:\/\/www.studymode.com\/join","payPlanUrl":"\/checkout\/pay","upgradeUrl":"\/checkout\/upgrade","freeTrialUrl":"https:\/\/www.studymode.com\/signup\/?redirectUrl=https%3A%2F%2Fwww.studymode.com%2Fcheckout%2Fpay%2Ffreetrial\u0026bypassPaymentPage=1","showModal":"getaccess","showModalUrl":"https:\/\/www.studymode.com\/signup\/?redirectUrl=https%3A%2F%2Fwww.studymode.com%2Fjoin","joinFreeUrl":"\/essays\/?newuser=1","siteId":1,"facebook":{"clientId":"306058689489023","version":"v2.9","language":"en_US"}}