The Chernobyl Disaster

Only available on StudyMode
  • Download(s) : 66
  • Published : March 25, 2013
Open Document
Text Preview
The April 1986 disaster at the Chernobyla nuclear power plant in Ukraine was the product of a flawed Soviet reactor design coupled with serious mistakes made by the plant operatorsb.  It was a direct consequence of Cold War isolation and the resulting lack of any safety culture. The accident destroyed the Chernobyl 4 reactor, killing 30 operators and firemen within three months and several further deaths later. One person was killed immediately and a second died in hospital soon after as a result of injuries received. Another person is reported to have died at the time from a coronary thrombosisc. Acute radiation syndrome (ARS) was originally diagnosed in 237 people on-site and involved with the clean-up and it was later confirmed in 134 cases. Of these, 28 people died as a result of ARS within a few weeks of the accident. Nineteen more subsequently died between 1987 and 2004 but their deaths cannot necessarily be attributed to radiation exposured. Nobody off-site suffered from acute radiation effects although a large proportion of childhood thyroid cancers diagnosed since the accident is likely to be due to intake of radioactive iodine falloutd. Furthermore, large areas of Belarus, Ukraine, Russia and beyond were contaminated in varying degrees. See also sections below and Chernobyl Accident Appendix 2: Health Impacts. The Chernobyl disaster was a unique event and the only accident in the history of commercial nuclear power where radiation-related fatalities occurrede. However, the design of the reactor is unique and the accident is thus of little relevance to the rest of the nuclear industry outside the then Eastern Bloc. On 25 April, prior to a routine shutdown, the reactor crew at Chernobyl 4 began preparing for a test to determine how long turbines would spin and supply power to the main circulating pumps following a loss of main electrical power supply. This test had been carried out at Chernobyl the previous year, but the power from the turbine ran down too rapidly, so new voltage regulator designs were to be tested. A series of operator actions, including the disabling of automatic shutdown mechanisms, preceded the attempted test early on 26 April. By the time that the operator moved to shut down the reactor, the reactor was in an extremely unstable condition. A peculiarity of the design of the control rods caused a dramatic power surge as they were inserted into the reactor (see Chernobyl Accident Appendix 1: Sequence of Events). The interaction of very hot fuel with the cooling water led to fuel fragmentation along with rapid steam production and an increase in pressure. The design characteristics of the reactor were such that substantial damage to even three or four fuel assemblies can – and did – result in the destruction of the reactor. The overpressure caused the 1000 t cover plate of the reactor to become partially detached, rupturing the fuel channels and jamming all the control rods, which by that time were only halfway down. Intense steam generation then spread throughout the whole core (fed by water dumped into the core due to the rupture of the emergency cooling circuit) causing a steam explosion and releasing fission products to the atmosphere. About two to three seconds later, a second explosion threw out fragments from the fuel channels and hot graphite. There is some dispute among experts about the character of this second explosion, but it is likely to have been caused by the production of hydrogen from zirconium-steam reactions. Two workers died as a result of these explosions. The graphite (about a quarter of the 1200 tonnes of it was estimated to have been ejected) and fuel became incandescent and started a number of firesf, causing the main release of radioactivity into the environment. A total of about 14 EBq (14 x 1018 Bq) of radioactivity was released, over half of it being from biologically-inert noble gases.* *The figure of 5.2 EBq is also quoted, this being "iodine-131 equivalent" - 1.8...
tracking img