Save Energy

Only available on StudyMode
  • Download(s) : 1933
  • Published : May 22, 2011
Open Document
Text Preview
How does my wind generator work?
Every wind generator, whether they produce enough energy to power a city or to power a small radio, works on these same basic principles... 1. The wind blows
2. The generator's vane (tail) causes it to turn into the wind 3. Blades attached to an alternator/generator experience the force of lift and begin to spin 4. The spinning creates electricity for us to use directly or to charge batteries

Sounds pretty simple eh? Well, then how the heck do I build one? Read on... Tools Required
Surprisingly, building a simple wind generator only requires very basic hand tools, and if you are desperate you won't necessarily need all of them. I used... * Jigsaw (or a hacksaw and a lot of determination)

* Drill
* (2) Drill Bits (1/2", 7/32")
* Tape Measure
* Crescent Wrench
* Pipe Wrench
* Protractor (to measure angles for the hub)
* Sandpaper (various grits)
Parts Required
I wanted to be as minimal as possible with my design (I'm poor), so I took the already simple designs from around the web and made them even simpler. All of the parts are available at any local home improvement or hardware store, and the entire setup can be constructed in as little as a weekend. Many of the parts you may already have lying around, and lots of substitutions can be made (instead of 1" steel pipe for the tower, you could use an antenna pole for instance). Here are the parts I used to build my generator... * 10" x 14" Steel Sheet

* 10" x 1/4" Steel Nipple
* 1-1/4" Floor Flange
* 36" x 1" Square Tubing
* 1/2" Bore Circular Sawblade (for hub)
* 5/8" x 1/2" Arbor (to attach sawblade to motor shaft)
* (2) Metal Straps
* 8" x 4" PVC Pipe
* 30" x 8" PVC Pipe (6" pipe works well too)
* A DC Permanent Magnet Motor (preferably Ametek 30V or 260V 5A treadmill motor) * (8) 1/4" Bolts (with washers and nuts)
* (2) 1/4" Sheet Metal Screws
* 10-40 Amp Diode (the bigger the better)

All of the above parts (with the exception of the motor), can be picked up in a single stop to any large hardware or home improvement store. For the motor, the most popular types are old tape drive motors manufactured by a company called Ametek. The key is to finding a motor that puts out the highest voltage per RPM. For instance, the Ametek I'm using is rated for 30V at 325 RPM, making it excellent as an electricity generator (for a nice output comparison of the Ametek motors commonly found on eBay and other sites see TLG Windpower). However, pretty much any permanent magnet motor with a good volt/RPM ratio will do. Keep in mind that if you want to generate useful electricity, you will need to produce at least 12V to charge deep cycle batteries or run an inverter. My setup can easily achieve 300-400 RPM in a pretty average wind (for Oklahoma). These instructions assume an Ametek motor with a 5/8" shaft, but can easily be adapted to other motors (search ebay for "wind generator" and you will get a listing of lots of good motors). Blade Construction

Arguably, the most important part of a wind generator are its blades. A lot of people like to carve their own blades out of wood or composite materials. However, for the rest of us, it's quite easy to make a good set of generator blades from common PVC pipe (and the efficiency isn't too bad either). A 2-3 foot section of either 6" or 8" PVC pipe will do the trick. Before we go any further, here are a few blade theory quickies... * The longer your blades are the more "swept area" you have to gather energy from and easier your blades will spin in low winds, but the slower your rotation speed will be * The tips of the blades always spin faster than the base, therefore one needs to take into account the "tip speed ratio" (TSR) when designing blades (there is a reason why old farm windmills will spin all year long at 40RPM) * The power that can be extracted from the wind increases by the cube of wind speed (something...
tracking img