# Re: Kolej Matrikulasi Pulau Pinang 2012/2013

Multiple Choice

1. Determine the equivalent capacitance of the combination shown when C = 12 pF. C

C 2C

C

a. b. c. d. e. 2.

48 pF 12 pF 24 pF 6.0 pF 59 pF

Determine the equivalent capacitance of the combination shown when C = 15 mF. C

C

2C

C

a. b. c. d. e. 3.

20 mF 16 mF 12 mF 24 mF 75 mF

Determine the equivalent capacitance of the combination shown when C = 12 nF. 2C C

C

3C

a. b. c. d. e.

34 nF 17 nF 51 nF 68 nF 21 nF

75

76

CHAPTER 26

4.

Determine the equivalent capacitance of the combination shown when C = 45 μF. C 2C

C

2C

a. b. c. d. e. 5.

36 μF 32 μF 34 μF 30 μF 38 μF

If C = 10 μF, what is the equivalent capacitance for the combination shown? C

8.0 μF

6.0 μF

a. b. c. d. e. 6.

7.5 μF 6.5 μF 7.0 μF 5.8 μF 13 μF

What is the equivalent capacitance of the combination shown? 12 μF 24 μF

20 μF 12 μF

a. b. c. d. e.

29 μF 10 μF 40 μF 25 μF 6.0 μF

Capacitance and Dielectrics

77

7.

What is the equivalent capacitance of the combination shown? 20 μF 30 μF

10 μF

30 μF

a. b. c. d. e. 8.

20 μF 90 μF 22 μF 4.6 μF 67 μF

Determine the equivalent capacitance of the combination shown when C = 45 μF. C

2C 6C

3C

a. b. c. d. e. 9.

28 μF 36 μF 52 μF 44 μF 23 μF

Determine the equivalent capacitance of the combination shown when C = 24 μF. C 2C

2C 2C

2C

a. b. c. d. e.

20 μF 36 μF 16 μF 45 μF 27 μF

78

CHAPTER 26

10.

Determine the energy stored in C2 when C1 = 15 μF, C2 = 10 μF, C3 = 20 μF, and V0 = 18 V. C1 + V0 – C2 C3

a. b. c. d. e. 11.

0.72 mJ 0.32 mJ 0.50 mJ 0.18 mJ 1.60 mJ

Determine the energy stored in C1 when C1 = 10 μF, C2 = 12 μF, C3 = 15 μF, and V0 = 70 V. C1 C2 C3

+ V0

–

a. b. c. d. e. 12.

6.5 mJ 5.1 mJ 3.9 mJ 8.0 mJ 9.8 mJ

Determine the energy stored by C4 when C1 = 20 μF, C2 = 10 μF, C3 = 14 μF, C4 = 30 μF, and V0 = 45 V. C2

C3 C1 + V0 – C4

a. b. c. d. e.

3.8 mJ 2.7 mJ 3.2 mJ 2.2 mJ 8.1 mJ

Capacitance and Dielectrics

79

13.

Determine the charge stored by C1 when C1 = 20 μF, C2 = 10 μF,C3 = 30 μF, and V0 = 18 V. C2 C1

C3 + V0 –

a. b. c. d. e. 14.

0.37 mC 0.24 mC 0.32 mC 0.40 mC 0.50 mC

What is the total energy stored by C3 when C1 = 50 μF, C2 = 30 μF, C3 = 36 μF, C4 = 12 μF, and V0 = 30 V? C1 C2 C3 C4

+ V0

–

a. b. c. d. e. 15.

6.3 mJ 25 mJ 57 mJ 1.6 mJ 14 mJ

How much energy is stored in the 50-μF capacitor when Va – Vb = 22V? a 25 μF

50 μF b 25 μF

a. b. c. d. e.

0.78 mJ 0.58 mJ 0.68 mJ 0.48 mJ 0.22 mJ

80

CHAPTER 26

16.

What is the total energy stored in the group of capacitors shown if the charge on the 30-μF capacitor is 0.90 mC? 30 μF

20 μF 15 μF

a. b. c. d. e. 17.

29 mJ 61 mJ 21 mJ 66 mJ 32 mJ

What is the potential difference across C2 when C1 = 5.0 μF, C2 = 15 μF, C3 = 30 μF, and V0 = 24 V? C1

C2

C3

+ V0

–

a. b. c. d. e.

21 V 19 V 16 V 24 V 8.0 V

Capacitance and Dielectrics

81

18.

What total energy is stored in the group of capacitors shown if the potential difference Vab is equal to 50 V? 50 μF

a

10 μF b 20 μF

a. b. c. d. e. 19.

48 mJ 27 mJ 37 mJ 19 mJ 10 mJ

Determine the energy stored in the 60-μF capacitor.

25 μF

50 V 40 μF 60 μF

a. b. c. d. e. 20.

2.4 mJ 3.0 mJ 3.6 mJ 4.3 mJ 6.0 mJ

Determine the energy stored in the 40-μF capacitor.

25 μF

50 V 40 μF 60 μF

a. b. c. d. e.

2.4 mJ 1.6 mJ 2.0 mJ 2.9 mJ 4.0 mJ

82

CHAPTER 26

21.

If VA – VB = 50 V, how much energy is stored in the 36-μF capacitor? 36 μF

A 72 μF 54 μF

B

a. b. c. d. e. 22.

50 mJ 28 mJ 13 mJ 8.9 mJ 17 mJ

If VA – VB = 50 V, how much energy is stored in the 54-μF capacitor? 36 μF

A 72 μF 54 μF

B

a. b. c. d. e. 23.

50 mJ 13 mJ 28 mJ 8.9 mJ 17 mJ

A 3.0-μF capacitor charged to 40 V and a 5.0-μF capacitor charged to 18 V are connected to each other, with the...

Please join StudyMode to read the full document