Phase Modulation

Only available on StudyMode
  • Download(s) : 455
  • Published : November 13, 2010
Open Document
Text Preview
Maxim > App Notes > Basestations/wireless infrastructure

Wireless and RF

Keywords: tutorial, QPSK, modulation, modulator, demodulator, demodulation

May 01, 2002

APPLICATION NOTE 686

QPSK modulation demystified
Abstract: Readers are presented with step-by-step derivations showing the operation of QPSK modulation and demodulation. The transition from analog communication to digital has advanced the use of QPSK. Euler's relation is used to assist analysis of multiplication of sine and cosine signals. A SPICE simulation is used to illustrate QPSK modulation of a 1MHz sine wave. A phasor diagram shows the impact of poor synchronization with the local oscillator. Digital processing is used to remove phase and frequency errors. Since the early days of electronics, as advances in technology were taking place, the boundaries of both local and global communication began eroding, resulting in a world that is smaller and hence more easily accessible for the sharing of knowledge and information. The pioneering work by Bell and Marconi formed the cornerstone of the information age that exists today and paved the way for the future of telecommunications. Traditionally, local communication was done over wires, as this presented a cost-effective way of ensuring a reliable transfer of information. However, for long-distance communications, transmission of information over radio waves was needed. Although this was convenient from a hardware standpoint, radio-waves transmission raised doubts about the corruption of the information; transmission was often dependent on high-power transmitters to overcome weather conditions, large buildings, and interference from other sources of electromagnetics. The various modulation techniques offered different solutions in terms of cost-effectiveness and quality of received signals but until recently were still largely analog. Frequency modulation and phase modulation presented a certain immunity to noise, whereas amplitude modulation was simpler to demodulate. However, more recently with the advent of low-cost microcontrollers and the introduction of domestic mobile telephones and satellite communications, digital modulation has gained in popularity. With digital modulation techniques come all the advantages that traditional microprocessor circuits have over their analog counterparts. Any shortfalls in the communications link can be eradicated using software. Information can now be encrypted, error correction can ensure more confidence in received data, and the use of DSP can reduce the limited bandwidth allocated to each service. As with traditional analog systems, digital modulation can use amplitude, frequency, or phase modulation with different advantages. As frequency and phase modulation techniques offer more immunity to noise, they are the preferred scheme for the majority of services in use today and will be discussed in detail below.

Digital frequency modulation
A simple variation from traditional analog frequency modulation (FM) can be implemented by applying a digital signal to the modulation input. Thus, the output takes the form of a sine wave at two distinct frequencies. To demodulate this waveform, it is a simple matter of passing the signal through two filters and translating the resultant back into logic levels. Traditionally, this form of modulation has been called frequency-shift keying (FSK).

Digital phase modulation
Spectrally, digital phase modulation, or phase-shift keying (PSK), is very similar to frequency modulation. It involves changing the phase of the transmitted waveform instead of the frequency, and these finite phase changes represent digital data. In its simplest form, a phase-modulated waveform can be generated by using the digital data to switch between two signals of equal frequency but opposing phase. If the resultant waveform is multiplied by a sine wave of equal frequency, two components are generated: one cosine waveform of double the received...
tracking img