A 15 kg uniform disk of radius R = 0.25 m has a string wrapped around it, and a m = 3 kg weight is hanging on the string. The system of the weight and disk is released from rest.

a) When the 3 kg weight is moving with a speed of 2.2 m/s, what is the kinetic energy of the entire system? KETOT= KEwheel+KEweight
= (1/2)(I)(w2)+(1/2)(m*v2)
=(0.5* v2)(m+1/2M)
=0.5*(2.2^2)*(3+(.5*15)) J

b) If the system started from rest, how far has the weight fallen? H = KETOT/MG
= 0.5*(2.2^2)*(3+(.5*15))/(3*9.8) m

c) What is the angular acceleration at this point?
Remember that a = αR, or α = a/R

Solve for acceleration by using vf2=vi2+2ax (vf=2.2, vi=0, x=(answer in part b)) That gives you the linear a… we want angular acceleration so we just divide our linear acceleration by the radius:

A solid sphere of uniform density starts from rest and rolls without slipping a distance of d = 3.7 m down a θ = 33° incline. The sphere has a mass M = 4.2 kg and a radius R = 0.28 m.

a) Of the total kinetic energy of the sphere, what fraction is translational? U just divide the translational found in part (b) by KEtotal ((1/2)mv2 + (1/2)Iω2) 0.71

b) What is the translational kinetic energy of the sphere when it reaches the bottom of the incline? (1/0.7)*9.8*(3.7sin(33))*.5*4.2

c) What is the translational speed of the sphere as it reaches the bottom of the ramp? You can find the velocity by using the conservation of energy theorem thing: KEi + Ui = KEf + Uf

...Example problems involving collisions 1) On a horizontal frictionless surface a puck of mass m initially at speed u collides head-on (without rotation) with a stationary puck of mass M. Find the velocities of both puck after the collision if: i) the collision is fully elastic ii) the collision if fully inelastic. i) momentum: kineticenergy: mu = mv+MV (+ve in direction of initial u) 1 /2 m u2 = 1/2 m v2 + 1/2 M V2
2 eqns in 2...

...suppose that Zak's younger cousin, Greta, sees him sliding and takes off her shoes so that she can slide as well (assume her socks have the same coefficient of kinetic friction as Zak's). Instead of getting a running start, she asks Zak to give her a push. So, Zak pushes her with a force of 125 \rm N over a distance of 1.00 \rm m. If her mass is 20.0 \rm kg, what distance d_2 does she slide after Zak's push ends?
Remember that the frictional force acts on Greta...

...KINETICENERGY
Objects have energy because of their motion; this energy is called kineticenergy. Kineticenergy of the objects having mass m and velocity v can be calculated with the formula given below;
K=1/2mv²
Kineticenergy is a scalar quantity; it does not have a direction. Unlike velocity, acceleration, force, and momentum, the...

...
Potential Energy:
Potential energy is the stored energy of position possessed by an object.
Potential Energy Formula :
Potential Energy: PE = m x g x h
Mass:
Acceleration of Gravity:
Height:
where,
PE = Potential Energy,
m = Mass of object,
g = Acceleration of Gravity,
h = Height of object,
Examples:
1. A cat had climbed at the top of the...

...Potential and KineticEnergy lab report
Caty Cleary
4th period
Problem statement:
How does the drop height (gravitational potential energy) of a ball affect the bounce height (kineticenergy) of the ball?
Variables:
Independent variable- drop height
Dependent variable- bounce height
Controlled variables (constants) - type of ball, measurement(unit), place bounced, and the materials used for each experiment....

...Learning Goals:
• Predict the kinetic and potential energy of objects.
• Examine how kinetic and potential energy interact with each other.
In the space provided, define the following words:
Kineticenergy-is the energy of motion. An object that has motion - whether it is vertical or horizontal motion
Potential energy-is the energy of an object or a...

...Equivalence.
Potential Energy
Potential energy is the same as stored energy. The "stored" energy is held within the gravitational field. When you lift a heavy object you exert energy which later will become kineticenergy when the object is dropped. A lift motor from a roller coaster exerts potential energy when lifting the train to the top of the hill. The higher the train is...

...KineticEnergy:
Consider a baseball flying through the air. The ball is said to have "kineticenergy" by virtue of the fact that its in motion relative to the ground. You can see that it is has energy because it can do "work" on an object on the ground if it collides with it (either by pushing on it and/or damaging it during the collision).
The formula for Kineticenergy, and for some of the...

2964 Words |
9 Pages

Share this Document

{"hostname":"studymode.com","essaysImgCdnUrl":"\/\/images-study.netdna-ssl.com\/pi\/","useDefaultThumbs":true,"defaultThumbImgs":["\/\/stm-study.netdna-ssl.com\/stm\/images\/placeholders\/default_paper_1.png","\/\/stm-study.netdna-ssl.com\/stm\/images\/placeholders\/default_paper_2.png","\/\/stm-study.netdna-ssl.com\/stm\/images\/placeholders\/default_paper_3.png","\/\/stm-study.netdna-ssl.com\/stm\/images\/placeholders\/default_paper_4.png","\/\/stm-study.netdna-ssl.com\/stm\/images\/placeholders\/default_paper_5.png"],"thumb_default_size":"160x220","thumb_ac_size":"80x110","isPayOrJoin":false,"essayUpload":false,"site_id":1,"autoComplete":false,"isPremiumCountry":false,"userCountryCode":"US","logPixelPath":"\/\/www.smhpix.com\/pixel.gif","tracking_url":"\/\/www.smhpix.com\/pixel.gif","cookies":{"unlimitedBanner":"off"},"essay":{"essayId":36993385,"categoryName":"Mathematics","categoryParentId":"19","currentPage":1,"format":"text","pageMeta":{"text":{"startPage":1,"endPage":4,"pageRange":"1-4","totalPages":4}},"access":"premium","title":"Mass and Kinetic Energy","additionalIds":[3,13,156,17],"additional":["Business \u0026 Economy","Health \u0026 Medicine","Health \u0026 Medicine\/Nutrition","Literature"],"loadedPages":{"html":[],"text":[1,2,3,4]}},"user":null,"canonicalUrl":"http:\/\/www.studymode.com\/essays\/Mass-And-Kinetic-Energy-1406097.html","pagesPerLoad":50,"userType":"member_guest","ct":10,"ndocs":"1,500,000","pdocs":"6,000","cc":"10_PERCENT_1MO_AND_6MO","signUpUrl":"https:\/\/www.studymode.com\/signup\/","joinUrl":"https:\/\/www.studymode.com\/join","payPlanUrl":"\/checkout\/pay","upgradeUrl":"\/checkout\/upgrade","freeTrialUrl":"https:\/\/www.studymode.com\/signup\/?redirectUrl=https%3A%2F%2Fwww.studymode.com%2Fcheckout%2Fpay%2Ffree-trial\u0026bypassPaymentPage=1","showModal":"get-access","showModalUrl":"https:\/\/www.studymode.com\/signup\/?redirectUrl=https%3A%2F%2Fwww.studymode.com%2Fjoin","joinFreeUrl":"\/essays\/?newuser=1","siteId":1,"facebook":{"clientId":"306058689489023","version":"v2.8","language":"en_US"},"analytics":{"googleId":"UA-32718321-1"}}