Freefall and Projectile Motion

Only available on StudyMode
  • Download(s) : 2283
  • Published : January 19, 2012
Open Document
Text Preview
Freefall and Projectile Motion

Introduction and Objectives
This lab experiment was done to determine the characteristics of free fall and projectile motion in Physics. The motion in which a body is thrown or projected is called Projectile motion while free fall is any motion of a body where gravity is the only force acting upon it, at least initially. In this experiment, a photogate, a chopper, and a Universal Lab Interface were used to determine the free fall motion of the chopper as it was released. A ball, carbon paper, and an L-shape projector were also used to determine the range of projectile motion of a ball being released from a horizontal yet slightly vertical slope. At the end of the experiment, one will know how velocity and time affect the acceleration of a free falling object and its projectile motion.

Aristotle stated in his theory of motion that the fall of a heavy object toward the center of the earth is a natural motion because the object is just returning to its natural place. He also stated that heavy objects fall faster than lighter ones because increase in the rate of motion is proportional to the weight of the object. Galileo’s theory states that the when a ball was rolled down an inclined plane at fixed angle; the ratio of the distance covered to the square of the corresponding time was always the same, but that when the angle of inclination is changed, the constant also changes but remains the same for the same angle. The constant d/t2 is also the constant for falling

object (refers to the acceleration due to gravity). The experimental range used in the experiment is 45 cm, and the expression of the range of the projectile was found in terms of Vg and h. The horizontal distance traveled by the projectile for the total time of flight is given simply by R=vxt where t is the total time of flight and vx is the constant horizontal velocity. The time of flight was found using the equation for vertical motion, which is y=yi +...
tracking img