Four Wheel Steering System Full Seminar Report

Only available on StudyMode
  • Topic: Steering, Automobile, Hydraulics
  • Pages : 10 (2824 words )
  • Download(s) : 1251
  • Published : April 15, 2013
Open Document
Text Preview
1. INTRODUCTION

Four-wheel steering, 4WS, also called rear-wheel steering or all-wheel steering, provides a means to actively steer the rear wheels during turning maneuvers. It should not be confused with four-wheel drive in which all four wheels of a vehicle are powered. It improves handling and help the vehicle make tighter turns.

Production-built cars tend to understeer or, in few instances, oversteer. If a car could automatically compensate for an understeer/oversteer problem, the driver would enjoy nearly neutral steering under varying conditions. 4WS is a serious effort on the part of automotive design engineers to provide near-neutral steering.

The front wheels do most of the steering. Rear wheel turning is generally limited to 50-60 during an opposite direction turn. During a same direction turn, rear wheel steering is limited to about 10-1.50.

When both the front and rear wheels steer toward the same direction, they are said to be in-phase and this produces a kind of sideways movement of the car at low speeds. When the front and rear wheels are steered in opposite direction, this is called anti-phase, counter-phase or opposite-phase and it produces a sharper, tighter turn.

2. WHY FOUR-WHEEL STEERING SYSTEM?

To understand the advantages of four-wheel steering, it is wise to review the dynamics of typical steering maneuvers with a conventional front -steered vehicle. The tires are subject to the forces of grip, momentum, and steering input when making a movement other than straight-ahead driving. These forces compete with each other during steering maneuvers. With a front-steered vehicle, the rear end is always trying to catch up to the directional changes of the front wheels. This causes the vehicle to sway. As a normal part of operating a vehicle, the driver learns to adjust to these forces without thinking about them.

When turning, the driver is putting into motion a complex series of forces. Each of these must be balanced against the others. The tires are subjected to road grip and slip angle. Grip holds the car's wheels to the road, and momentum moves the car straight ahead. Steering input causes the front wheels to turn. The car momentarily resists the turning motion, causing a tire slip angle to form. Once the vehicle begins to respond to the steering input, cornering forces are generated. The vehicle sways as the rear wheels attempt to keep up with the cornering forces already generated by the front tires. This is referred to as rear-end lag, because there is a time delay between steering input and vehicle reaction. When the front wheels are turned back to a straight -ahead position, the vehicle must again try to adjust by reversing the same forces developed by the turn. As the steering is turned, the vehicle body sways as the rear wheels again try to keep up with the cornering forces generated by the front wheels.

The idea behind four-wheel steering is that a vehicle requires less driver input for any steering maneuver if all four wheels are steering the vehicle. As with two-wheel steer vehicles, tire grip holds the four wheels on the road. However, when the driver turns the wheel slightly, all four wheels react to the steering input, causing slip angles to form at all four wheels. The entire vehicle moves in one direction rather than the rear half attempting to catch up to the front. There is also less sway when the wheels are turned back to a straight-ahead position. The vehicle responds more quickly to steering input because rear wheel lag is eliminated.

3. TYPES OF 4WS

There are three types of production of four-wheel steering systems:

1. Mechanical 4WS
2. Hydraulic 4WS
3. Electro-hydraulic 4WS

1. Mechanical 4WS...
tracking img