OBJECTIVE
experiment is done to investigate the validation of the Bernoulli’s equation and also to measure pressure distribution along venture tube.

INTRODUCTION
This experiment is carried out to investigate the validity of Bernoulli’s theorem when applied to the steady flow of water in tapered duct and to measure the flow rates and both static and total pressure heads in a rigid convergent/divergent tube of known geometry for a range of steady flow rates. The Bernoulli’s theorem (Bernoulli’s theorem, 2011) relates the pressure, velocity, and elevation in a moving fluid (liquid or gas), the compressibility and viscosity of which are negligible and the flow of which is steady, or laminar. In order to demonstrate the Bernoulli’s theorem Bernoulli’s Apparatus Test Equipment issued in this experiment.

THEORY
• Velocity of fluid is less fluid
• The fluid is incompressible and non- viscous
• There is no heat energy transferred across the boundaries of the pipe to the fluid as either a heat gain or loss.
• There are no pumps in the section of pipe

For an ideal fluid flow the energy density is the same at all locations along the pipe. This is the same as saying that the energy of a unit mass of the fluid does not change as it flow through the pipe system.

APPARATUS

EXPERIMENTAL PROCEDURE
1, A inspection was done to ensure that the unit was in proper operating condition, so that the experiment will not consist of errors.
2, A hose had to be connected to the nearest power supply.
3, The discharged pipe was then opened.
4, The cap nut of the probe compression gland was set to such condition, that the slight resistance could be felt on moving the probe, and the water flow created a sound which also helps to determine the flow pressure (by hearing it ).

5, The inlet and outlet valve was then opened.
6, Then the pump was switched on and the main cock was released slowly opened. 7, The vent...

...EXPERIMENT : - 2
EXPERIMENT Verification of Bernoulli’s Energy Equation
THEORY
For steady incompressible flow Bernoulli’s energy equation along a streamline is written as
[pic] constant
where
[pic] = pressure, [pic] = velocity and [pic] = height from datum
Purpose of this experiment is to verify this expression. In the special...

...Experiment No. 1: Bernoulli’s Theorem
Object:
To verify Bernoulli's theorem for a viscous and incompressible fluid.
Theory:
In our daily lives we consume a lot of fluid for various reasons. This fluid is
delivered through a network of pipes and fittings of different sizes from an overhead
tank. The estimation of losses in these networks can be done with the help of this
equation which is essentially principle of conservation of...

...bernoulli's theorem
ABSTRACT / SUMMARY
The main purpose of this experiment is to investigate the validity of the Bernoulli equation when applied to the steady flow of water in a tape red duct and to measure the flow rate and both static and total pressure heads in a rigid convergent/divergent tube of known geometry for a range of steady flow rates. The apparatus used is Bernoulli’s Theorem Demonstration Apparatus,...

...In fluid dynamics, Bernoulli's principle states that for an in viscid flow, an increase in the speed of the fluid occurs simultaneously with a decrease in pressure or a decrease in the fluid's potential energy. Bernoulli's principle is named after the Swiss scientist Daniel Bernoulli who published his principle in his book Hydrodynamica in 1738.
Bernoulli's principle can be applied to various types of fluid flow, resulting in what is loosely denoted...

...CHAPTER 1
INTRODUCTION:
Bernoulli's Principle is a physical phenomenon that was named after the Swiss scientist Daniel Bernoulli who lived during the eighteenth century. Bernoulli studied the relationship of the speed of a fluid and pressure.
The Swiss mathematician and physicist Daniel Bernoulli (1700-1782) discovered the principle that bears his name while conducting experiments concerning an even more fundamental concept: the conservation of energy. This is...

...velocity of the stream using Equation 1.
(Eqn. 1)
Where is the flowrate in m3/s and A is the cross-sectional area of the pipe. To find the flowrate, we multiply the flowmeter reading by the constant
and convert from gallons to cubic meters as follows:
The cross sectional area of the 7.75mm pipe is
Plugging these values into Equation 1, we obtain a bulk velocity .
With the bulk velocity value, we can find the Reynolds number of the flow using...

...1. Which equation below represents the quadratic formula?
*a. -b±b2-4ac2a = x
b. a2+b2=c2
c. fx=a0+n=1∞ancosnπxL+bnsinnπxL
2. Which of the following represents a set of parallel lines?
a. Option one
b. Option two
*c. Option three
3. What is the definition of an obtuse angle?
*a. an angle greater than 90°
b. an angle equal to 90°
c. an angle less than 90°
4. Which formula below represents the area of a circle?
a. A=2πr
*b....

...Experiment 22
Title:
Reactions of aldehydes and ketones
Aim:
The purpose of this experiment is to compare some reactions of ethanal and propanone.
Introduction:
We have chosen ethanal and propanone as relatively safe examples of aldehydes and ketones to illustrate their reactions in simple test-tube experiments.
The reactions or properties to be investigated are as follows:
A. Condensation (addition-elimination)
B. Oxidation
C....

499 Words |
3 Pages

Share this Document

{"hostname":"studymode.com","essaysImgCdnUrl":"\/\/images-study.netdna-ssl.com\/pi\/","useDefaultThumbs":true,"defaultThumbImgs":["\/\/stm-study.netdna-ssl.com\/stm\/images\/placeholders\/default_paper_1.png","\/\/stm-study.netdna-ssl.com\/stm\/images\/placeholders\/default_paper_2.png","\/\/stm-study.netdna-ssl.com\/stm\/images\/placeholders\/default_paper_3.png","\/\/stm-study.netdna-ssl.com\/stm\/images\/placeholders\/default_paper_4.png","\/\/stm-study.netdna-ssl.com\/stm\/images\/placeholders\/default_paper_5.png"],"thumb_default_size":"160x220","thumb_ac_size":"80x110","isPayOrJoin":false,"essayUpload":false,"site_id":1,"autoComplete":false,"isPremiumCountry":false,"userCountryCode":"US","logPixelPath":"\/\/www.smhpix.com\/pixel.gif","tracking_url":"\/\/www.smhpix.com\/pixel.gif","cookies":{"unlimitedBanner":"off"},"essay":{"essayId":37650211,"categoryName":"Mathematics","categoryParentId":"19","currentPage":1,"format":"text","pageMeta":{"text":{"startPage":1,"endPage":4,"pageRange":"1-4","totalPages":4}},"access":"premium","title":"Experiment to Investigate the Validation of Bernoulli’s Equation","additionalIds":[13,7,93,162],"additional":["Health \u0026 Medicine","Education","Education\/Greek System","Health \u0026 Medicine\/Disease"],"loadedPages":{"html":[],"text":[1,2,3,4]}},"user":null,"canonicalUrl":"http:\/\/www.studymode.com\/essays\/Experiment-To-Investigate-The-Validation-Of-1622555.html","pagesPerLoad":50,"userType":"member_guest","ct":10,"ndocs":"1,500,000","pdocs":"6,000","cc":"10_PERCENT_1MO_AND_6MO","signUpUrl":"https:\/\/www.studymode.com\/signup\/","joinUrl":"https:\/\/www.studymode.com\/join","payPlanUrl":"\/checkout\/pay","upgradeUrl":"\/checkout\/upgrade","freeTrialUrl":"https:\/\/www.studymode.com\/signup\/?redirectUrl=https%3A%2F%2Fwww.studymode.com%2Fcheckout%2Fpay%2Ffree-trial\u0026bypassPaymentPage=1","showModal":"get-access","showModalUrl":"https:\/\/www.studymode.com\/signup\/?redirectUrl=https%3A%2F%2Fwww.studymode.com%2Fjoin","joinFreeUrl":"\/essays\/?newuser=1","siteId":1,"facebook":{"clientId":"306058689489023","version":"v2.8","language":"en_US"},"analytics":{"googleId":"UA-32718321-1"}}