Travis Foglesong
Dr. Carter
English 111-F23
February 19, 2013
The American Regression
In Cal Thomas' article, “Is the American Dream Over?” he expresses a strong, anti-liberal opinion that explains why “the American dream” is lost. The article points out that the American society has become too dependent on a dysfunctional government while the key to a successful life in America used to lie in individual initiative. Certain traits, that had lead past generations to success, have been lost, buried underneath laziness, dependance, and indulgence. Most Americans refuse to acknowledge their own flaws, that keep them from achieving their goals, and look for any kind of scapegoat that they can fine: rather it be the government, the media, or their situation. Thomas provides the realistic evidence that proves that “the American dream,” is long gone as a result of the American society itself.

Blaming the government for one's economic trouble tends to be the go-to strategy for those who have become “government addicts” (as Thomas calls them) rather than reflecting on the individuals irresponsible decisions and life style. A large number of these citizens depend on the same government to fix their problems and refuse to resolve their financial issues on their own. “People who believe a politician of whatever party or persuasion can make their life better than individual initiative are doing more than dreaming; such persons are displaying cult-like faith, which can never be fulfilled,” Thomas states in his article (569-570). In past generations, a self-serving American was looked down on, today, the few Americans that are willing to take care of themselves are now the roll model citizens. “Ask not what your country can do for you; ask what you can do for your country,” said during former president John F. Kennedy's inaugural address, briefly describes the required attitude that an American citizen, sneaking “the American dream” needs.

...
Logistic regression
In statistics, logistic regression, or logit regression, is a type of probabilistic statistical classification model.[1] It is also used to predict a binary response from a binary predictor, used for predicting the outcome of acategorical dependent variable (i.e., a class label) based on one or more predictor variables (features). That is, it is used in estimating the parameters of a qualitative response model. The probabilities describing the possible outcomes of a single trial are modeled, as a function of the explanatory (predictor) variables, using a logistic function. Frequently (and subsequently in this article) "logistic regression" is used to refer specifically to the problem in which the dependent variable is binary—that is, the number of available categories is two—while problems with more than two categories are referred to as multinomial logistic regression or, if the multiple categories are ordered, as ordered logistic regression.
Logistic regression measures the relationship between a categorical dependent variable and one or more independent variables, which are usually (but not necessarily) continuous, by using probability scores as the predicted values of the dependent variable.[2] As such it treats the same set of problems as doesprobit regression using similar techniques.
Fields and examples of applications[edit]...

...Determinants of Production and Consumptions
Determinants of Industry Production (Supply)
Supply is the amount of output of production that producers are willing and able to sell at a given price all other factors being held constant.
The following are the determinants of supply:
Price (P), Numbers of Producers (NP), Taxes (T)
Model Specification
Specification of model is to specify the form of equation, or regression relation that indicates the relationship between the independent variables and the dependent variables. Normally the specific functional form of the regression relation to be estimated is chosen to depict the true supply relationships as closely possible.
The table presented below gives the hypothetical quantity supplied for a particular product (Qs) of a particular place given its price per kilo (P/kl), the Numbers of producers (NP), and tax per kilo (T/kl) for the period 2002 to 2011. (The quantity Supplied is expressed as kilo in millions)
Table
|Year |Qs |P/kl |NP |T/kl |
|2002 |21.4 |23 |39 |1.15 |
|2003 |23.9 |25 |41 |1.25 |
|2004...

...associated with a β1 change in Y.
(iii) The interpretation of the slope coefficient in the model ln(Yi ) = β0 + β1 ln(Xi ) + ui is as
follows:
(a) a 1% change in X is associated with a β1 % change in Y.
(b) a change in X by one unit is associated with a β1 change in Y.
(c) a change in X by one unit is associated with a 100β1 % change in Y.
(d) a 1% change in X is associated with a change in Y of 0.01β1 .
(iv) To decide whether Yi = β0 + β1 X + ui or ln(Yi ) = β0 + β1 X + ui fits the data better, you
cannot consult the regression R2 because
(a) ln(Y) may be negative for 0 < Y < 1.
(b) the TSS are not measured in the same units between the two models.
(c) the slope no longer indicates the effect of a unit change of X on Y in the log-linear
model.
(d) the regression R2 can be greater than one in the second model.
1
(v) The exponential function
(a) is the inverse of the natural logarithm function.
(b) does not play an important role in modeling nonlinear regression functions in econometrics.
(c) can be written as exp(ex ).
(d) is ex , where e is 3.1415...
(vi) The following are properties of the logarithm function with the exception of
(a) ln(1/x) = −ln(x).
(b) ln(a + x) = ln(a) + ln(x).
(c) ln(ax) = ln(a) + ln(x).
(d) ln(xa) = aln(x).
(vii) In the log-log model, the slope coefficient indicates
(a) the effect that a unit change in X has on Y.
(b) the elasticity of Y with respect to X.
(c) ∆Y/∆X.
(d)
∆Y
∆X
×
Y
X
(viii) In the...

...Regression Analysis Exercises
1- A farmer wanted to find the relationship between the amount of fertilizer used and the yield of corn. He selected seven acres of his land on which he used different amounts of fertilizer to grow corn. The following table gives the amount (in pounds) of fertilizer used and the yield (in bushels) of corn for each of the seven acres.
|Fertilizer Used |Yield of Corn |
|120 |138 |
|80 |112 |
|100 |129 |
|70 |96 |
|88 |119 |
|75 |104 |
|110 |134 |
a. With the amount of fertilizer used as an independent variable and yield of corn as a dependent...

...What it means to be an American?
This question what is an American cannot be answered by one word. There are so many different characteristics, qualities, and features that can be used to describe an American. Besides features, someone is only a real American if they take advantage of all of the many privileges that are given to them. Any person that is not grateful for the privileges that are given to them to me are not real Americans but this is only my opinion. Real Americans use their privileges to benefit themselves and everyone around them. In today’s society there are certain things that are expected from American citizens, for instance being a successful person.
Being responsible is a very important part of being an American. There are many rights that you are given when living in America, and with these rights you are expected to be responsible and not abuse them. One right that you shouldn’t abuse is your right to vote. This is something that many of us take for granted. Having to make this choice you are expected to make the responsible decision. The only person that it would hurt if you don’t take this type of thing seriously is yourself. Along with this privilege of voting on whom you want to run our country, you are then expected to take the responsibility to fight in war if ever needed. This is...

...Regression Analysis (Tom’s Used Mustangs)
Irving Campus
GM 533: Applied Managerial Statistics
04/19/2012
Memo
To:
From:
Date: April 19st, 2012
Re: Statistic Analysis on price settings
Various hypothesis tests were compared as well as several multiple regressions in order to identify the factors that would manipulate the selling price of Ford Mustangs. The data being used contains observations on 35 used Mustangs and 10 different characteristics.
The test hypothesis that price is dependent on whether the car is convertible is superior to the other hypothesis tests conducted. The analysis performed showed that the test hypothesis with the smallest P-value was favorable, convertible cars had the smallest P-value.
The data that is used in this regression analysis to find the proper equation model for the relationship between price, age and mileage is from the Bryant/Smith Case 7 Tom’s Used Mustangs. As described in the case, the used car sales are determined largely by Tom’s gut feeling to determine his asking prices.
The most effective hypothesis test that exhibits a relationship with the mean price is if the car is convertible. The Regression Analysis is conducted to see if there is any relationship between the price and mileage, color, owner and age and GT. After running several models with different independent variables, it is concluded that there is a relationship between the price and...

...Linear-Regression Analysis
Introduction
Whitner Autoplex located in Raytown, Missouri, is one of the AutoUSA dealerships. Whitner Autoplex includes Pontiac, GMC, and Buick franchises as well as a BMW store. Using data found on the AutoUSA website, Team D will use Linear Regression Analysis to determine whether the purchase price of a vehicle purchased from Whitner Autoplex increases as the age of the consumer purchasing the vehicle increases. The data set provided information about the purchasing price of 80 domestic and imported automobiles at Whitner Autoplex as well as the age of the consumers purchasing the vehicles. Team D selected the first 30 of the sampled domestic vehicles to use for this test. The business research question Team D will answer is: Does the purchase price of a consumer increase as the age of the consumer increases? Team D will use a linear-regression analysis to test the age of the consumers and the prices of the vehicles.
Five Step Hypothesis Testing
Team D will conduct the two-sample hypothesis using the following five steps:
1. Formulate the hypothesis
2. State the decision rule
3. Calculate the Test Statistic
4. Make the decision
5. Interpret the results
Step 1- Formulate the Hypothesis
Using the research question: Does the purchase price of an automobile purchased at Whitner Autoplex, increase as the age of the consumer purchasing the vehicle...

...
A. DETERMINE IF BLOOD FLOW CAN PREDICT ARTIRIAL OXYGEN.
1. Always start with scatter plot to see if the data is linear (i.e. if the relationship between y and x is linear). Next perform residual analysis and test for violation of assumptions. (Let y = arterial oxygen and x = blood flow).
twoway (scatter y x) (lfit y x)
regress y x
rvpplot x
2. Since regression diagnostics failed, we transform our data.
Ratio transformation was used to generate the dependent variable and reciprocal transformation was used to generate the independent variable.
3. Check if the model is adequate by checking the t-statistic, R2 and F-statistic.
F statistic reveals that the equation used to determine the relationship between the x and y is functional. Using the test statistic for the test of coefficients, it was revealed that the constant value in the equation is not significantly different from 0. Also, it was revealed that the transformed x, significantly explains the dependent variable. Also, it was revealed that the measure of proportion of variability explained by the fitted value is relatively high with 96.23%. This means that transformed data in blood flow explains 96.23% of the variation in the transformed data in arterial oxygen.
4. Check the normality of residuals and equal variances
predict r, resid
kdensity r, normal
pnorm tx
qnorm tx
rvpplot tx
Before we could perform the numerical test, we must first generate the r by the...