Advances in Modern Irrigation Systems

Only available on StudyMode
  • Download(s) : 264
  • Published : January 22, 2013
Open Document
Text Preview
ADVANCES IN MODERN IRRIGATION SYSTEMS

A TERM PAPER
PRESENTED
BY

AROBOINOSEN HILLARY
M.ENG/S.E.E.T/2011/3137

AGRICULTURAL AND BIO-RESOURCES ENGINEERING DEPARTMENT
FEDERAL UNIVERSITY OF TECHNOLOGY
MINNA

SEPTEMBER 2012

ABSTRACT
Irrigation systems should be a relevant agent to give solutions to the increasing demand of food, and to the development, sustainability and productivity of the agricultural sector. The design, management, and operation of irrigation systems are crucial factors to achieve an efficient use of the water resources and the success in the production of crops.The aim of this paper is to analyze the advances made in irrigation systems as well as identify the principal criteria and processes that allow improving the design and management of the irrigation systems,based on the basic concept that they facilitate to develop agriculture more efficiently and sustainable. The advances and management of irrigation systems at farm level is a factor of the first importance for the rational use of water, economic development of the agriculture and its environmental sustainability.

Key words: Irrigation, Design, Water Management, Operation Systems

INTRODUCTION
Water required by crops is supplied by nature in theform of precipitation, but when it becomes scarce or its distribution does not coincide with demand peaks, it is then necessary to supply it artificially, by irrigation. Several irrigation methods are available, and the selection of one depends on factors such as water availability, crop, soil characteristics, land topography, and associated cost. In the near future, irrigated agriculture will need to produce two-thirds of the increase in food products required by a larger population (English et al., 2002). The growing dependence on irrigated agriculture coincides with an accelerated competition for water and increased awareness of unintended negative consequences of poor design and management (Cai et al., 2003) Optimum management of available water resources at farm level is needed because of increasing demands, limited resources, water table variation in space and time, and soil contamination (Kumar and Singh, 2003). Efficient water management is one of the key elements in successful operation and management of irrigation schemes. Irrigation technology has made significant advances in recent years. Criteria and procedures have been developed to improve and rationalize practices to apply water, through soil leveling, irrigation system design, discharge regulations, adduction structures, and control equipment. However, in many regions these advances are not yet available at the farm stage. Irrigation systems are selected, designed and operated to supply the irrigation requirements of each crop on the farm while controlling deep percolation, runoff, evaporation, and operational losses, to establish a sustainable production process. Playán and Mateos (2006) mentioned that modernized irrigation systems at farm level implies selecting the appropriate irrigation system and strategy according to the water availability, the characteristics of climate, soil and crop, the economic and social circumstances, and the constraints of the distribution system. Efficient irrigation equipment generally comes in two broad categories—drip and sprinkler irrigation. Both of these areas have several sub-types of equipment in them. Within drip irrigation are surface drip equipment, subsurface drip equipment and micro sprays/sprinklers. This category of drip irrigation and particularly subsurface drip irrigation (SDI) is one of the most exciting and newest technologies in irrigation. Drip irrigation has attracted tremendous interest by academics, who measure the performance of drip systems and promote drip as a water savings technology. Sprinkler equipment can also be broken down into several subcategories including wheel lines, solid set and hand move pipe, traveling guns, and mechanical move irrigation (MMI)...
tracking img