What is the direction of the acceleration vector for each of these situations? Remember that if an object speeds up, then the velocity and acceleration vectors are in the same direction. If an object slows down, then they are in opposite directions. Any object that is traveling in a vertical direction also experiences acceleration due to gravity.

Left: Object travels to left and speeds up.

Down: Object is tossed upward.

A ball is tossed up into the air with a velocity of 50 m/s. The figure to the left shows the position of the ball at equal time intervals on its upward travel. Answer the following questions regarding the instantaneous velocity and acceleration of the ball:

True: The velocity of the ball has decreased from point B to point C.

Point C: Where does the ball have the smallest velocity?

Down: What is the direction of acceleration of the ball at point B?

True: The acceleration points downwards at point C.

A ball is thrown upward at time t = 0 s from the ground with an initial velocity of 4 m/s (~ 9 mph). Assume that g = 10 m/s2. At what time t does the ball reach its apex (highest point)? 0.4000 s

At what time t does the ball reach the ground?
0.8000 s
What is the maximum height (apex) reached by the ball?
0.8000 m

Correct: The ball has a positive acceleration when rolling both up and down the ramp.

A 1100 kg racing car accelerates from rest at a constant rate and covers a distance of 1000 m in 20 s. What is the car's acceleration? 5 m/s2

...in Lesson 1 is acceleration. An often confused quantity, acceleration has a meaning much different than the meaning associated with it by sports announcers and other individuals. The definition of acceleration is:
Acceleration is a vector quantity that is defined as the rate at which an object changes its velocity. An object is accelerating if it is changing its velocity.
Sports announcers will occasionally say that a person is accelerating if he/she is moving fast. Yet acceleration has nothing to do with going fast. A person can be moving very fast and still not be accelerating. Acceleration has to do with changing how fast an object is moving. If an object is not changing its velocity, then the object is not accelerating. The data at the right are representative of a northward-moving accelerating object. The velocity is changing over the course of time. In fact, the velocity is changing by a constant amount - 10 m/s - in each second of time. Anytime an object's velocity is changing, the object is said to be accelerating; it has an acceleration.
The Meaning of Constant Acceleration
Sometimes an accelerating object will change its velocity by the same amount each second. As mentioned in the previous paragraph, the data table above show an object changing its velocity by 10 m/s in each consecutive second. This is referred to as aconstant...

...ACCELERATION:
Good afternoon everyone! Our group will discuss about acceleration. But before that, what is acceleration?
Acceleration is a vector quantity that is defined as the rate at which an object changes its velocity. An object is accelerating if it is changing its velocity.
People will occasionally say that a person is accelerating if he/she is moving fast. Yet acceleration has nothing to do with going fast. A person can be moving very fast and still not be accelerating. Acceleration has to do with changing how fast an object is moving. If an object is not changing its velocity, then the object is not accelerating.
Sometimes an accelerating object will change its velocity by the same amount each second. As mentioned earlier. This is referred to as a constant acceleration. since the velocity is changing by a constant amount each second. An object with a constant acceleration should not be confused with an object with a constant velocity. Don't be fooled! If an object is changing its velocity -whether by a constant amount or a varying amount - then it is an accelerating object. And an object with a constant velocity is not accelerating.
Calculating the Average Acceleration
The average acceleration (a) of any object over a given interval of time (t) can be calculated using the equation
Acceleration...

...Acceleration from Gravity on an Incline
I. Introduction:
Acceleration is the rate of change of the velocity of a moving body. Galileo was the first person to actually experiment and examine the concept of acceleration back in the seventeenth century. Acceleration can be determined by calculating the gravity and an incline. An incline is slope that is deviated between horizontal and vertical positions. Gravity is the natural force of attraction towards the center of the earth. Because of this, we are able to calculate acceleration.
II. Purpose:
The purpose of this experiment was to determine the relationship between the angle of an incline and the acceleration of a cart rolling down a ramp. Once our results were recorded, we were able to examine them to determine if our results were based upon gravity’s natural pull.
III. Procedure/Materials
First, we began by setting up our ramp and cart. We then used a motion detector and repeated our experiment five different times each with a different incline to roll the cart down. We recorded data after each time.
Lab Quest
Track
Dynamics Kit
Ring Stand
Vernier Motion Detector
Meter Stick
Calculator
IV. Data
Height, h (cm)
Length, x (cm)
Sin Ѳ
Acceleration Trial 1
(m/s2)
Acceleration Trial 2
(m/s2)
Acceleration Trial 3
(m/s2)
Average Acceleration
(m/s2)
10...

...forces acting on the cup? If so, how do they differ from the forces that would be acting on the cup if it sat on your kitchen table at home? Determine the Concept Yes, there are forces acting on it. They are the normal force of the table and the gravitational pull of Earth (weight). Because the cup is not accelerating relative to the ground, the forces are the same as those that would act on it if it was sitting on your table at home. 2 • You are passing another car on a r highway and determine that, relative to you, the car you pass has an acceleration a to the west. However, the driver of the other car is maintaining a constant speed and direction relative to the road. Is the reference frame of your car an inertial one? If not, in which direction (east or west) is your car accelerating relative to the other car? Determine the Concept No. You are in a non-inertial frame that is accelerating to the east, opposite the other car’s apparent acceleration. 3 • [SSM] You are riding in a limousine that has opaque windows that do not allow you to see outside. The car is on a flat horizontal plane, so the car can accelerate by speeding up, slowing down, or turning. Equipped with just a small heavy object on the end of a string, how can you use it to determine if the limousine is changing either speed or direction? Can you determine the limousine’s velocity? Determine the Concept In the limo you hold one end of the string and suspend the object from the...

... It's a hot summer and in the depths of the Toronto Transit Authority's lost and found, 17-year-old Duncan is cataloging misplaced belongings. And between Jacob, the cranky old man who runs the place, and the endless dusty boxes overflowing with stuff no one will ever claim, Duncan has just about had enough. Then he finds a little leather book filled with the dark and dirty secrets of a twisted mind, a serial killer stalking his prey in the subway. And Duncan can't stop reading. What would you do with a book like that? How far would you go to catch a madman? This is the teaser to an amazing book I read “Acceleration” By: Graham McNamee.
Duncan the main leading character of the story discovers a journal belonging to what he thinks is a serial killer and he uses his knowledge of profiling as well as the clues from the journal to try to decipher who the serial killer is and who are his intended victims before the serial killer strikes. Duncan is a bad kid that’s been in trouble with the law who has been sent to work at the Toronto Transit Commission's lost and found in order to complete his two-months of community service. He and his friend Wayne were sentenced to community service after Wayne convinced Duncan to break into a new apartment building to steal an expensive toilet that they could sell to his uncle for some quick cash. The two teens end up getting caught when the toilet falls down the stairs and alerts the cop on duty that night.
At his new job,...

...Ali Bush
Mr. Harrison
English 9 Pre-AP
17 March 2012
As stated by George Washington Carver, “How far you go in life depends on your being tender with the young, compassionate with the aged, sympathetic with the striving, and tolerant of the weak and the strong -- because someday you will have been all of these.” In Harper Lee’s To Kill a Mockingbird, Atticus Finch is the father of Jem and Scout Finch, while fighting justice as a lawyer in Maycomb County. Atticus Finch is an affectionate, benevolent, sympathetic, and tolerate man with anyone he comes in contact with. He is respectful to everyone and believes strongly in equality among everyone in Maycomb, regardless of their age, gender, race, or rank. As the novel progresses, the reader gains a love for Atticus as he presents himself as a wise, calm, moral, and expressive person.
Throughout the novel, Atticus reveals his wisdom to the readers. During the court case, he never lets his guard down and is ready to take whatever bullet is shot toward Tom Robinson. His wisdom never subsides as he tries to persuade the brainwashed jury of Maycomb that an innocent Negro is meant to be free, not treated as an animal in his own city all from accusations. In his conclusion, Atticus states, “The state has not produced one iota of medical evidence to the effect that the crime Tom Robinson is charged with ever took place. It has relied instead upon the testimony of two witnesses whose evidence has not only been called into...

...influence the acceleration of a cart when it travels down a wooden plank?
Introduction:
What is an incline plane? Commonly referred to as a ramp or a slope, an incline plane is an even surface that is titled at an angle. An object placed on the tilted surface will often slide down the surface, accelerating because of an unbalanced force. The rate at which an object travels down the slope is dependent upon how tilted the slope is; the greater the tilt of the plane, the faster the rate which an object will slide down. Thus, if a physics cart is released on at a steep slope, the acceleration of the cart is expected to roll down the slope at a faster rate. As shown in figure 1, when a cart is released on an inclined plane, there’s always two to four forces acting upon the cart – the force of gravity (acts in a downward direction), the normal force (the support force exerted upon the object that is in contact with another stable object), the force of movement (the force from the wheels-moment of an object) and the force of friction (the force exerted by a surface as an object moves across). According to Isaac Newton’s law of Universal Gravitation, objects near the surface of the earth accelerate at a rate of 9.8m/s/s towards the ground.
The purpose of this investigation was to determine the relationship between the angle of inclination and the acceleration of a physics cart. This was done to determine whether if the physics...

...Uniform linear acceleration
Introduction
This topic is about particles which move in a straight line and accelerate uniformly. Problems can vary enormously, so you have to have your wits about you. Problems can be broken down into three main categories:
Constant uniform acceleration
Time-speed graphs
Problems involving two particles
Constant uniform acceleration
Remember what the following variables represent: t = the time ; a = theacceleration ; u = the initial speed ; v = the final speed ; s = the displacement from where the particle started. When the acceleration is negative, it is sometimes called a deceleration or retardation. For example, an acceleration of –3 ms-2 is the same as a deceleration (or retardation) of 3 ms-2.
• To answer this question, you will need to use the four key formulae intelligently.
They are:
• It is important to know the second of these equations off by heart; the others appear on Page 40 of The Mathematical Tables. Secondly, you may be asked to derive either of the last two equations from the first two. Practise this.
• These four formulae will be useful elsewhere (for example when doing Questions 3 and 4 on projectiles and connected particles).
Time-speed graphs
Remember that the above formulae may be used only while the acceleration is uniform. If a particle speeds up,...