Only available on StudyMode
  • Download(s) : 9
  • Published : May 7, 2013
Open Document
Text Preview
By Samuel Lees and Adrian Guillot
1. General physics 1.1 length and time 1.2 Speed, velocity and acceleration 1.3 Mass and weight 1.4 Density 1.5 Forces a. Effects of forces b. Turning effect c. Conditions for equilibrium d. Centre of mass e. Scalars and vectors 1.6 Energy work power a. Energy b. Energy resources c. Work d. Power 1.7 Pressure 2. Thermal physics 2.1 a. States of matter b. Molecular model c. Evaporation d. Pressure changes 2.2 Thermal properties a. Thermal expansion of solids, liquids and gases b. Measurement of temperature c. Thermal capactiy d. Melting and boiling 2.3 Transfer of thermal energy a. Conduction b. Convection c. Radiation d. Consequences of energy transfer Properties of waves, including light and sound 3.1 General wave properties 3.2 Light a. Reflection of light b. Refraction of light c. Thin converging lens d. Dispersion of light e. Electromagnetic spectrum 3.3 Sound Electricity and magnetism




4.1 Simple phenomena of magnetism 4.2 Electrical quantities a. Electric charge b. Current c. Electro-motive force d. Potential difference e. Resistance f. Electrical energy 4.3 Electric circuits a. Circuit diagrams b. Series and parallel circuits c. Action and use of circuit components d. Digital electronics 4.4 Dangers of electricity 4.5 Electromagnetic effects a. Electromagnetic induction b. a.c. generator c. Transformer d. The magnetic effect of a current e. Force on a current carrying conductor f. d.c. motor 4.6 Cathode-ray oscilloscopes a. Cathode rays b. Simple treatment of cathode-ray oscilloscope Atomic physics 5.1 Radioactivity a. Detection of radioactivity b. Characteristics of the three kinds of emission c. Radioactive decay d. Half-life e. Safety precautions 5.2 The nuclear atom a. Atomic model b. Nucleus c. Isotopes

Units for IGSCE: quantity mass length time area volume force weight pressure energy work power frequency PD, EMF current resistance charge capacitance temperature specific heat capacity specific latent heat latent heat speed acceleration unit kilogram metre second square metre cubic metre newton newton pascal joule joule watt hertz volt ampere ohm coulomb farad Kelvin degree Celsius joules per kilogram ° Celsius joules per kilogram joule metres per second metres per second per second symbol Kg m s m2 m3 N N Pa J J W Hz V A Ω C F K °C J/(kg°C) J/kg J m/s m/s2 other units g cm h, min cm2 cm3 N/m2 kWh J/(g°C) J/g cm/s or km/h


1. General physics 1.1 Length and time Length: •A rule (ruler) is used to measure length for distances between 1mm and 1meter; the SI unit for length is the meter (m) •To find out the volume of a regular object, you can use a mathematical formula, you just need to make a couple of length measurements. •To measure the volume of an irregular object you have to put the object into measuring cylinder with water. When you add the object it displaces the water, making the water level rise. Measure this rise. This is the volume of your object. •Micrometers:

Rotate the thimble until the wire is firmly held between the anvil and the spindle. To take a reading, first look at the main scale. This has a linear scale reading on it. The long lines are every millimetre the shorter ones denote half a millimetre in between. Then look at the rotating scale. Add the 2 numbers, on the scale on the right it would be: 2.5mm + 0.46mm = 2.96mm Time: •An interval of time is measured using clocks, the SI unit for time is the second(s) •To find the amount of time it takes a pendulum to make a spin, time ~25 circles and then divide by the same number as the number of circles.

1.2 Speed, velocity and acceleration • Speed is the distance an object moves in a time frame. It is measured in metres/second (m/s) or kilometres/hour (km/h). speed = distance moved / time taken Distance/time graphs and speed/time graphs:

• Calculating distance travelled: -with constant speed: speed × time -with constant...
tracking img