Neural Networks

Only available on StudyMode
  • Topic: Neural network, Artificial neural network, Unsupervised learning
  • Pages : 10 (2693 words )
  • Download(s) : 42
  • Published : December 1, 2012
Open Document
Text Preview
BSc and Diploma in
Computing and Related Subjects

Neural networks
A. Vella and C. Vella
2009
2910311

The material in this subject guide was prepared for the University of London External System by:
Dr Alfred D. Vella, BSc, PhD, MSc, BA, FIMA, MBCS, CEng, CMath and
Carol A. Vella, BSc, MSc, BA, PGCert. T&L in HE, PGDip. T&L in HE. This is one of a series of subject guides published by the University. We regret that due to pressure of work the authors are unable to enter into any correspondence relating to, or arising from, the guide. If you have any comments on this subject guide, favourable or unfavourable, please use the form at the back of this guide.

This subject guide is for the use of University of London External System students registered for programmes in the field of Computing. The programmes currently available in these subject areas are:

BSc (Honours) in Computing and Information Systems
BSc (Honours) in Creative Computing
Diploma in Computing and Information Systems
Diploma in Creative Computing

The External System
Publications Office
University of London
32 Russell Square
London
WC1B 5DN
United Kingdom
Website: www.londonexternal.ac.uk
All rights reserved. No part of this work may be reproduced in any form, or by any means, without permission in writing from the publisher. This material is not licensed for resale.
Published by: University of London Press
© University of London 2009
Printed by: Central Printing Service, University of London, England

Contents

Contents
Chapter 1: Introduction............................................................................................ 1 1.1 About this half unit........................................................................................... 1 Aims ................................................................................................................. 1 Objectives ......................................................................................................... 1 Learning outcomes ........................................................................................... 1 Coursework ...................................................................................................... 1 Essential reading .............................................................................................. 2 Further reading ................................................................................................. 2 1.2 About this guide ............................................................................................... 2 How to use this guide ....................................................................................... 3 1.3 Materials on the CD-ROM............................................................................... 3 1.4 Recommendation on study time ...................................................................... 4 1.5 Examinations ................................................................................................... 4 Advice on revising ........................................................................................... 4 A reminder of your learning outcomes............................................................. 4 Chapter 2: Motivation for artificial neural networks ............................................ 5 Learning outcomes ........................................................................................... 5 Essential reading .............................................................................................. 5 Further reading ................................................................................................. 5 2.1 Introduction ...................................................................................................... 5 2.2 Historical perspective....................................................................................... 7 2.3 ANN Goals, tools and techniques...
tracking img