# Edexcel Maths Fp1 2010 June

**Topics:**Kompakt

**Pages:**37 (1118 words)

**Published:**October 27, 2012

Centre No. Candidate No.

Paper Reference(s)

Initial(s)

Paper Reference Signature

6 6 6 7

6667/01

0 1

Examiner’s use only

Edexcel GCE

Further Pure Mathematics FP1

Advanced/Advanced Subsidiary

Tuesday 22 June 2010 – Afternoon Time: 1 hour 30 minutes

Team Leader’s use only

Question Leave Number Blank

1 2 3 4

Materials required for examination Mathematical Formulae (Pink)

Items included with question papers Nil

5 6 7 8 9

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper. Answer ALL the questions. You must write your answer to each question in the space following the question. When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet ‘Mathematical Formulae and Statistical Tables’ is provided. Full marks may be obtained for answers to ALL questions. The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 9 questions in this question paper. The total mark for this paper is 75. There are 28 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

Total

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2010 Edexcel Limited. Printer’s Log. No.

Turn over

N35387A

W850/R6667/57570 4/3

*N35387A0128*

1. (a) Show that z 2 = −5 − 12i.

z = 2 – 3i (2) Find, showing your working, (b) the value of z 2 , (2) (c) the value of arg( z 2 ), giving your answer in radians to 2 decimal places. (2) (d) Show z and z 2 on a single Argand diagram. (1)

Leave blank

___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________...

Please join StudyMode to read the full document