Working Memory

Topics: Working memory, Memory, Cognitive psychology Pages: 26 (9539 words) Published: October 31, 2011
Working memory
From Wikipedia, the free encyclopedia
Working memory is the ability to actively hold information in the mind needed to do complex tasks such as reasoning, comprehension and learning. Working memory tasks are those that require the goal-oriented active monitoring or manipulation of information or behaviors in the face of interfering processes and distractions. The cognitive processes involved include the executive and attention control of short-term memory which provide for the interim integration, processing, disposal, and retrieval of information. Working memory is a theoretical concept central both to cognitive psychology and neuroscience. Theories exist both regarding the theoretical structure of working memory and the role of specific parts of the brain involved in working memory. Research identifies the frontal cortex, parietal cortex, anterior cingulate, and parts of the basal ganglia as crucial. The neural basis of working memory has been derived from lesion experiments in animals and functional imaging upon humans. Contents [hide]

1 History
2 Theories
2.1 Baddeley and Hitch
2.2 Cowan
2.3 Ericsson and Kintsch
3 Capacity
3.1 Measures and correlates
3.2 Experimental studies of working memory capacity
3.2.1 Different approaches
3.2.2 Time-based resource sharing model
3.2.3 Limitations
4 Development
4.1 Childhood
4.2 Aging
5 Training
6 Working memory in the brain
6.1 Genetics
6.2 Physiology and Psychopharmacology
6.3 Localization
6.4 Effects of stress
7 Neural maintenance
8 Learning
9 Attention
10 Research
11 See also
12 References
13 External links
[edit]History

The term "working memory" was coined by Miller, Galanter, and Pribram,[1][2] and was used in the 1960s in the context of theories that likened the mind to a computer. Atkinson and Shiffrin (1968)[3] also used this term, "working memory" (p. 92) to describe their "short-term store." What we now call working memory was referred to as a "short-term store" or short-term memory, primary memory, immediate memory, operant memory, or provisional memory.[4] Short-term memory is the ability to remember information over a brief period of time (in the order of seconds). Most theorists today use the concept of working memory to replace or include the older concept of short-term memory, thereby marking a stronger emphasis on the notion of manipulation of information instead of passive maintenance. The earliest mention of experiments on the neural basis of working memory can be traced back to over 100 years ago, when Hitzig and Ferrier described ablation experiments of the prefrontal cortex (PFC), they concluded that the frontal cortex was important for cognitive rather than sensory processes.[5] In 1935 and 1936, Carlyle Jacobsen and colleagues were the first to show the deleterious effect of prefrontal ablation on delayed response.[5][6] [edit]Theories

There have been numerous models proposed regarding how working memory functions, both anatomically and cognitively. Of those, three that are well known are summarized below. [edit]Baddeley and Hitch

Main article: Baddeley's model of working memory
Baddeley and Hitch (1974)[7] introduced and made popular the multicomponent model of working memory. This theory proposes that two "slave systems" are responsible for short-term maintenance of information, and a "central executive" is responsible for the supervision of information integration and for coordinating the slave systems. One slave system, the phonological loop (PL), stores phonological information (that is, the sound of language) and prevents its decay by continuously articulating its contents, thereby refreshing the information in a rehearsal loop. It can, for example, maintain a seven-digit telephone number for as long as one repeats the number to oneself again and again. The other slave system, the visuo-spatial sketch pad (VSSP), stores visual and spatial information. It can be used, for example, for constructing...

References: ^ Miller, GA., Galanter, E. & Pribram, KH. (1960) "Plans and the Structure of Behavior." Holt, Rinehart & Winston, New York.[page needed]
^ Baddeley A (October 2003)
^ Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In K. W. Spence & J. T. Spence (Eds.), The psychology of learning and motivation (Vol. 2, pp. 89–195). New York: Academic Press.
^ Fuster, J. M. (1997). The Prefrontal Cortex: Anatomy, physiology, and neuropsychology of the frontal lobe (2 ed.): Lippincott, Williams & Wilkins[page needed]
^ a b Fuster, Joaquin (2008)
^ Benton, A.L (1991). "The prefrontal region:Its early history". In Levin, Harvey S.; Eisenberg, Howard M.; Benton, Arthur L.. Frontal lobe function and dysfunction. New York: Oxford University Press. p. 19. ISBN 0-19-506284-1.
^ Baddeley, A.D., Hitch, G.J.L (1974). Working Memory, In G.A. Bower (Ed.), The psychology of learning and motivation: advances in research and theory (Vol. 8, pp. 47–89), New York: Academic Press.
^ Cowan, N. (1995). Attention and memory: An integrated framework. New York: Oxford University Press.[page needed]
^ Cowan, N
^ Oberauer K (May 2002). "Access to information in working memory: exploring the focus of attention". Journal of Experimental Psychology. Learning, Memory, and Cognition 28 (3): 411–21. doi:10.1037/0278-7393.28.3.411. PMID 12018494.
^ Gobet F (November 2000). "Some shortcomings of long-term working memory". British Journal of Psychology 91 (Pt 4): 551–70. doi:10.1348/000712600161989. PMID 11104178.
^ Kintsch, Walter; Patel, Vimla L.; Ericsson, K. Anders (1999). "The role of long-term working memory in text comprehension". Psychologia 42 (4): 186–98.
^ Hulme, Charles; Roodenrys, Steven; Brown, Gordon; Mercer, Robin (November 1995). "The role of long-term memory mechanisms in memory span". British Journal of Psychology 86 (4): 527–36. doi:10.1111/j.2044-8295.1995.tb02570.x.
^ Cowan, Nelson (2001). "The magical number 4 in short-term memory: A reconsideration of mental storage capacity". Behavioral and Brain Sciences 24: 87–185. doi:10.1017/S0140525X01003922. PMID 11515286.
^ Daneman, Meredyth; Carpenter, Patricia A. (August 1980). "Individual differences in working memory and reading". Journal of Verbal Learning & Verbal Behavior 19 (4): 450–66. doi:10.1016/S0022-5371(80)90312-6.
^ Oberauer, K.; Sus, H.-M.; Schulze, R.; Wilhelm, O; Wittmann, W. W. (December 2000). "Working memory capacity — facets of a cognitive ability construct". Personality and Individual Differences 29 (6): 1017–45. doi:10.1016/S0191-8869(99)00251-2.
^ Conway AR, Kane MJ, Engle RW (December 2003). "Working memory capacity and its relation to general intelligence". Trends in Cognitive Sciences 7 (12): 547–52. doi:10.1016/j.tics.2003.10.005. PMID 14643371.
^ Halford GS, Baker R, McCredden JE, Bain JD (January 2005). "How many variables can humans process?". Psychological Science 16 (1): 70–6. doi:10.1111/j.0956-7976.2005.00782.x. PMID 15660854.
^ Just MA, Carpenter PA (January 1992). "A capacity theory of comprehension: individual differences in working memory". Psychological Review 99 (1): 122–49. doi:10.1037/0033-295X.99.1.122. PMID 1546114.
^ Towse JN, Hitch GJ, Hutton U (April 2000). "On the interpretation of working memory span in adults". Memory & Cognition 28 (3): 341–8. doi:10.3758/BF03198549. PMID 10881551.
^ Waugh NC, Norman DA (March 1965). "Primary Memory". Psychological Review 72: 89–104. doi:10.1037/h0021797. PMID 14282677.
^ Oberauer, Klaus; Kliegl, Reinhold (November 2006). "A formal model of capacity limits in working memory". Journal of Memory and Language 55 (4): 601–26. doi:10.1016/j.jml.2006.08.009.
^ Barrouillet P, Bernardin S, Camos V (March 2004). "Time constraints and resource sharing in adults ' working memory spans". Journal of Experimental Psychology. General 133 (1): 83–100. doi:10.1037/0096-3445.133.1.83. PMID 14979753.
^ Maehara, Yukio; Saito, Satoru (February 2007). "The relationship between processing and storage in working memory span: Not two sides of the same coin". Journal of Memory and Language 56 (2): 212–228. doi:10.1016/j.jml.2006.07.009.
^ Li, Karen Z.H. (June 1999). "Selection from Working Memory: on the Relationship between Processing and Storage Components". Aging, Neuropsychology, and Cognition 6 (2): 99–116. doi:10.1076/anec.6.2.99.784.
^ Lewandowsky S, Duncan M, Brown GD (October 2004). "Time does not cause forgetting in short-term serial recall". Psychonomic Bulletin & Review 11 (5): 771–90. doi:10.3758/BF03196705. PMID 15732687.
^ Oberauer K, Lewandowsky S (July 2008). "Forgetting in immediate serial recall: decay, temporal distinctiveness, or interference?". Psychological Review 115 (3): 544–76. doi:10.1037/0033-295X.115.3.544. PMID 18729591.
^ Lange EB, Oberauer K (2005). "Overwriting of phonemic features in serial recall". Memory 13 (3-4): 333–9. doi:10.1080/09658210344000378. PMID 15948618.
^ a b Gathercole, S. E.; Pickering, S. J.; Ambridge, B.; Wearing, H. (2004). "The structure of working memory from 4 to 15 years of age". Developmental Psychology 40 (2): 177–190. doi:10.1037/0012-1649.40.2.177. PMID 14979759.
^ Salthouse, T. A. (1994). "The aging of working memory". Neuropsychology 8: 535–543. doi:10.1037/0894-4105.8.4.535.
^ Pascual-Leone, J. (1970). "A mathematical model for the transition rule in Piaget 's developmental stages". Acta Psychologica 32: 301–345. doi:10.1016/0001-6918(70)90108-3.
^ Case, R. (1985). Intellectual development. Birth to adulthood. New York: Academic Press.
^ Kail, R. (2007). "Longitudinal evidence that increases in processing speed and working memory enhance children 's reasoning". Psychological Science 18 (4): 312–313. doi:10.1111/j.1467-9280.2007.01895.x. PMID 17470254.
^ Andrews, G.; Halford, G. S. (2002). "A cognitive complexity metric applied to cognitive development". Cognitive Psychology 45 (2): 153–219. doi:10.1016/S0010-0285(02)00002-6. PMID 12528901.
^ Hertzog, C., Dixon, R. A., Hultsch, D. F., & MacDonald, S. W. S. (2003). Latent change models of adult cognition: Are changes in processing speed and working memory associated with changes in episodic memory? Psychology and Aging, 18, 755–769.
^ a b Park, D. C., Lautenschlager, G., Hedden, T., Davidson, N. S., Smith, A. D., & Smith, P. K. (2002). Models of visuospatial and verbal memory across the adult life span. Psychology & Aging, 17, 299–320.
^ Salthouse, T. A. (1996). "The processing speed theory of adult age differences in cognition". Psychological Review 103 (3): 403–428. doi:10.1037/0033-295X.103.3.403. PMID 8759042.
^ Mayr, U.; Kliegl, R.; Krampe, R. T. (1996). "Sequential and coordinative processing dynamics in figural transformation across the life span". Cognition 59 (1): 61–90. doi:10.1016/0010-0277(95)00689-3. PMID 8857471.
^ Hasher, L., & Zacks, R. T. (1988). Working memory, comprehension, and aging: A review and new view. In G. H.Bower (Ed.), The psychology of learning and motivation, Vol. 22, (pp. 193–225). New York: Academic Press.
^ Hasher, L., Zacks, R. T., & May, C. P. (1999). Inhibitory control, circadian arousal, and age. In D. Gopher & A. Koriat (Eds.), Attention and Performance (pp. 653–675). Cambridge, MA: MIT Press.
^ West, R. L. (1996). "An application of prefrontal cortex function theory to cognitive aging". Psychological Bulletin 120 (2): 272–292. doi:10.1037/0033-2909.120.2.272. PMID 8831298.
^ Barkley: Attention-Deficit Hyperactivity Disorder, third edition 2006[page needed]
^ Klingberg T, Forssberg H, Westerberg H (September 2002)
^ Olesen PJ, Westerberg H, Klingberg T (January 2004). "Increased prefrontal and parietal activity after training of working memory". Nature Neuroscience 7 (1): 75–9. doi:10.1038/nn1165. PMID 14699419.
^ McNab F, Varrone A, Farde L, et al. (February 2009). "Changes in cortical dopamine D1 receptor binding associated with cognitive training". Science 323 (5915): 800–2. doi:10.1126/science.1166102. PMID 19197069.
^ Sternberg RJ (May 2008). "Increasing fluid intelligence is possible after all". Proceedings of the National Academy of Sciences of the United States of America 105 (19): 6791–2. doi:10.1073/pnas.0803396105. PMC 2383939. PMID 18474863.
^ Moody, David E. (2009). "Can intelligence be increased by training on a task of working memory?". Intelligence 37 (4): 327–8. doi:10.1016/j.intell.2009.04.005.
^ T. Klingberg (2009). The overflowing brain: information overload and the limits of working memory. Oxford University Press. ISBN 978-0-19-537288-5.
^ Zanto TP, Gazzaley A (March 2009). "Neural suppression of irrelevant information underlies optimal working memory performance". The Journal of Neuroscience 29 (10): 3059–66. doi:10.1523/JNEUROSCI.4621-08.2009. PMC 2704557. PMID 19279242.
^ Shipstead Z, Redick TS, Engle RW (2010). "Does working memory training generalize?". Psychologica Belgica 50 (3&4): 245–276.
^ Sherry, D. F., and Schacter, D. L. (1987). "The evolution of multiple memory systems". Psychological Review 94: 439–454.
^ Jacobsen CF (1938). "Studies of cerebral function in primates". Comp Psychol Monogr 13: 1–68.
^ Fuster JM (January 1973). "Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory". Journal of Neurophysiology 36 (1): 61–78. PMID 4196203.
^ Ashby FG, Ell SW, Valentin VV, Casale MB (November 2005). "FROST: a distributed neurocomputational model of working memory maintenance". Journal of Cognitive Neuroscience 17 (11): 1728–43. doi:10.1162/089892905774589271. PMID 16269109.
^ Goldman-Rakic PS (1995). "Cellular basis of working memory". Neuron 14: 447–485.
^ Rao SG, Williams GV, Goldman-Rakic PS (2000). "Destruction and creation of spatial tuning by disinhibition: GABA(A) blockade of prefrontal cortical neurons engaged by working memory". J. Neuroscience 20: 485–494.
^ Arnsten AFT, Paspalas CD, Gamo NJ, Y. Y, Wang M (2010). "Dynamic Network Connectivity: A new form of neuroplasticity". Trends Cognitive Sci. 14 (8): 365–375. doi:10.1016/j.tics.2010.05.003. PMC 2914830. PMID 20554470.
^ Robbins TW, Arnsten AF (2009). "The neuropsychopharmacology of fronto-executive function: monoaminergic modulation". Annu Rev Neurosci 32: 267–287. doi:10.1146/annurev.neuro.051508.135535. PMC 2863127. PMID 19555290.
^ Smith EE, Jonides J (March 1999). "Storage and executive processes in the frontal lobes". Science 283 (5408): 1657–61. doi:10.1126/science.283.5408.1657. PMID 10073923.
^ Mottaghy FM (April 2006). "Interfering with working memory in humans". Neuroscience 139 (1): 85–90. doi:10.1016/j.neuroscience.2005.05.037. PMID 16337091.
^ Curtis CE, D 'Esposito M (September 2003). "Persistent activity in the prefrontal cortex during working memory". Trends in Cognitive Sciences 7 (9): 415–423. doi:10.1016/S1364-6613(03)00197-9. PMID 12963473.
^ a b Postle BR (April 2006). "Working memory as an emergent property of the mind and brain". Neuroscience 139 (1): 23–38. doi:10.1016/j.neuroscience.2005.06.005. PMC 1428794. PMID 16324795.
^ Collette F, Hogge M, Salmon E, Van der Linden M (April 2006). "Exploration of the neural substrates of executive functioning by functional neuroimaging". Neuroscience 139 (1): 209–21. doi:10.1016/j.neuroscience.2005.05.035. PMID 16324796.
^ M. Coltheart. (2006). What has functional neuroimaging told us about the mind (so far)? Cortex; a journal devoted to the study of the nervous system and behavior, 42, [1]
^ Kondo H, Osaka N, Osaka M (October 2004)
^ Arnsten, AF (June 1998). "The biology of being frazzled". Science 280 (5370): 1711–2. doi:10.1126/science.280.5370.1711. PMID 9660710.
^ Arnsten, AF (June 2009). "Stress signalling pathways that impair prefrontal cortex structure and function". Nat Rev Neurosci. 10 (6): 410–22. doi:10.1038/nrn2648. PMC 2907136. PMID 19455173.
^ Radley JJ, Rocher AB, Miller M, Janssen WG, Liston C, Hof PR, McEwen BS, Morrison JH (Mar 2006). "Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex". Cereb Cortex 16 (3): 313–20. doi:10.1093/cercor/bhi104. PMID 15901656.
^ Liston C, McEwen BS, Casey BJ (Jan 2009). "Psychosocial stress reversibly disrupts prefrontal processing and attentional control". Proc Natl Acad Sci U S A 106 (3): 912–7. doi:10.1073/pnas.0807041106. PMC 2621252. PMID 19139412.
^ Raffone A, Wolters G (August 2001). "A cortical mechanism for binding in visual working memory". Journal of Cognitive Neuroscience 13 (6): 766–85. doi:10.1162/08989290152541430. PMID 11564321.
^ Klimesch, W. (2006). "Binding principles in the theta frequency range". In Zimmer, H. D.; Mecklinger, A.; Lindenberger, U.. Handbook of binding and memory. Oxford: Oxford University Press. pp. 115–144.
^ Cowan, N., & Alloway, T.P. (2008). The development of working memory. In N. Cowan (Ed). Development of Memory in Childhood, 2nd edition, pp. 303–342. Hove, England: Psychology Press
^ Alloway TP, Alloway RG (2010)
^ Alloway TP, Gathercole SE, Kirkwood H, Elliott J (2009). "The cognitive and behavioral characteristics of children with low working memory". Child Development 80 (2): 606–21. doi:10.1111/j.1467-8624.2009.01282.x. PMID 19467014.
^ Alloway, Tracy Packiam (2009). "Working Memory, but Not IQ, Predicts Subsequent Learning in Children with Learning Difficulties". European Journal of Psychological Assessment 25 (2): 92–8. doi:10.1027/1015-5759.25.2.92.
^ Alloway, Tracy Packiam (2010). Improving Working Memory: Supporting Students ' Learning. London: SAGE Publications. ISBN 978-1-8492-0748-5.
^ a b c Fukuda K, Vogel EK (July 2009). "Human variation in overriding attentional capture". The Journal of Neuroscience 29 (27): 8726–33. doi:10.1523/JNEUROSCI.2145-09.2009. PMID 19587279.
Continue Reading

Please join StudyMode to read the full document

You May Also Find These Documents Helpful

  • The Functions of Memory Essay
  • Working Memory Research Paper
  • Human Memory Essay
  • Working Memory and Its Components Essay
  • working memory Essay
  • Memory Span and Word Complexity Essay
  • Working Memory Model Psychology Essay
  • Evaluating the Short-Term Memory Essay

Become a StudyMode Member

Sign Up - It's Free