# The Physics of a Truss Bridge

Good Essays
988 Words
Grammar
Plagiarism
Writing
Score
The Physics of a Truss Bridge
Truss Bridge
Physics 141
Robin Hoffmeister

There is many reason that we need bridges in every day of our life, from sufficient means to pass over a roadway, waterway, railway, or other structure. You don’t even think about them because it takes no effort to get over them and they are just there for your use. So if you don’t think of them for everyday use I highly doubt that you would think of the physics that is involved in putting one together or the kind of force the bridge can actually take. I am going to show you the max force a truss bridge can take by demonstration it to you in class and also by trying to calculate it. I am also going to go over the many ways that truss bridges can fail and come to a tumbling crash. Before I get into the physics of the bridge you need to know what a truss bridge is and how it works. A truss is a structure composed of members connected together to form a rigid framework. Members are the load-carrying components of a structure. In most trusses, members are arranged in interconnected triangles, as shown below. Because of this configuration, truss members carry load primarily in tension and compression. Because trusses are very strong for their weight, they are often used to span long distances. They have been used extensively in bridges since the early 19th century; however, truss bridges have become somewhat less common in recent years. Today trusses are often used in the roofs of buildings and stadiums, in towers, construction cranes, and many similar structures and machines.

An easy way to understand how a truss bridge works is to use a nutcracker and a sting tied to the ends of the nutcracker. So even if you push down on the nutcracker it will not move or slide on the table. This is because the nutcracker is in equilibrium. I am going to show you a little of a harder way of calculating it with three triangles that are in the shape of a truss bridge so you can understand how the bridge works
400N

Bibliography: Boon, Garrett. Model Bridge design. 2010. 30 11 2010 . Britannica, Encyclopeadia. truss bridge. 2010. 31 12 2010 . Buzzle.com intelligent life on the web. 2009. 31 11 2010 . Donan Engineering. 2010. 29 11 2010 . Serway, vuille. College Physics. belmont, CA: brooks/cole, 2009.

## You May Also Find These Documents Helpful

• Good Essays

Each type of design is although, unique in its own way, fulfills the desired goal that the Truss Brides are made for. The purpose of this experiment is to research various bridges and build a similar one that gave the students the highest inspiration. For one case in particular, the bridge design was in-spired by the Pratt Bridge and almost every height, width, and length met the requirements ex-cept for the length on the bottom part of the bridge, it exceeded the maximum height that was asked. Moreover the bridge held a total of 20 pounds before one of the top sticks snapped. Alt-hough it performed a decent job, the bridge could have held more weight if there were more di-agonals to provide more support so the bridge wouldn't break. Furthermore, this bridge fulfilled its goal and held a large amount of weight for such a small bridge. These bridges are also very significant for this planet because it is very resourceful and effective, as well as…

• 876 Words
• 4 Pages
Good Essays
• Good Essays

Truss bridges are recognizable because of their numerous, relatively small interconnected triangles. This framework of triangles is used for is strength to withstand tension and compression forces. They are considered a light-weight yet a very stiff form of construction. At first they were built of wood, then with the discovery of welding they began to build then using iron, then steel. Occasionally, a combination of the materials may be used. There are actually 30 different kinds of truss bridges. Truss bridges were commonly built before the 1930’s. They are considered expensive to build today and are considered to be labor intensive and costly to maintain. Truss bridges are frequently found to be used for railroad bridges and typical spans can range from 40m to 500m.…

• 536 Words
• 3 Pages
Good Essays
• Good Essays

There is a variety of truss bridges, like the Pegram truss, Howe truss, and the Long truss. The Pegram truss has wires that are more extensive at the base however it’s the same length as one another at the top. The Bridge that has vertical components and makes a diagonal slope up towards the middle point of the bridge is the Howe truss, similar to the Long Bridge which is like a variation a the Howe truss however, it’s made out of wood and utilized to secure…

• 992 Words
• 4 Pages
Good Essays
• Good Essays

The first being that both the top and the bottom chords for the anchor and cantilever arms of the bridge were mostly designed as straight pieces. This was done to make the construction of the bridge easier and cheaper. The top chords that attached to the anchor and the cantilever arms on the Quebec Bridge were created to be slightly curved, because the engineers believed it looked more aesthetically pleasing. However, the curvature of the chords added to the secondary stresses on the members, and reduced their buckling capacity. The engineering records for the building of the Quebec Bridge has stated in it, “As a rule secondary stresses are much more dangerous in tension that in compression members, which seem to have been the first to give way in the Quebec…

• 1508 Words
• 7 Pages
Good Essays
• Good Essays

One of Roebling’s greatest implementations in the Niagara Falls Bridge was his lattice truss design. Unlike the standard lattice truss systems where the diagonal beams lie over each other, his system interlaced the diagonal beams. This provided the structure with a higher rigidity than what was previously possible using traditional methods. This design was not flawless, however, as it substantially reduced the effectiveness of the diagonals. Roebling thought this compromise was acceptable given that the bridge supports served to buttress the system. Another advantage of the diagonal iron bands is that it avoids wooden joints which are comparatively movable and reduce the resistance of the system. A horizontal giving way (buckling) of the truss level is not possible since at the final point the vertical poles take only pulling tension…

• 227 Words
• 1 Page
Good Essays
• Good Essays

A truss bridge is a bridge whose load-bearing super structure is composed of a truss, a structure of connected elements forming triangular units. The connected elements are typically straight. The truss bridge is different because it uses triangles, its way brought about in the 19th and 20th century. in paragraph citation (author, year) ) J.B. Calvevt Created July 19 2000.…

• 733 Words
• 3 Pages
Good Essays
• Good Essays

Czaja, S. J., & Sharit, J. (2009). The Bridge. Washington, DC: National Academy of Engineering.…

• 822 Words
• 3 Pages
Good Essays
• Satisfactory Essays

20/5/2014 TRANSPORTATION ENGINEERING EV407 ASST. PROF. DR. DEPRIZON SYAMSUNUR UCSI KUALA LUMPUR MAY 2014 deprizon@yahoo.com +60146468479 INTRODUCTION TO TRANSPORTATION 1 20/5/2014 Content • • • • • • • What is Transportation? Mode of transportation Function of transportation…

• 2464 Words
• 29 Pages
Satisfactory Essays
• Good Essays

The ropes/cables help hold the weight of the bridge and the weight exerted on the bridge. A very famous example of a suspension bridge is the Golden Gate bridge in San Francisco.…

• 706 Words
• 3 Pages
Good Essays
• Best Essays

Method of joints: In this method, free body diagrams of adjacent joints of a member are seen to check the forces acting on different members. Also, “the first joint selected must have two unknown forces and one known force” (Walker 139). The unknown forces are later solved by using ∑x = 0 and ∑y = 0 (Since the whole model is at rest, it is considered that each member in the model will be at rest too). Once the two unknown forces are found, they become known forces to other adjacent joints and are used to find other unknown forces of another member. This technique is used on all the members of the model is found.…

• 2295 Words
• 10 Pages
Best Essays
• Satisfactory Essays

2. Tension, Weight: You are part of a team to help design the atrium of a new building. Your boss, the manager of the project, wants to suspend a 20-lb sculpture high over the room by hanging it from the ceiling using thin, clear fishing line (string) so that it will be difficult to see how the sculpture is held up. The only place to fasten the fishing line is to a wooden beam which runs around the edge of the room at the ceiling. The fishing line that she wants to use will hold 20 lbs. (20-lb test) so she suggests attaching two lines to the sculpture to be safe. Each line would come from the opposite side of the ceiling to attach to the hanging sculpture. Her initial design has one line making an angle of 20o with the ceiling and the other line making an angle of 40o with the ceiling. She knows you took physics, so she asks you if her design can work.…

• 2277 Words
• 6 Pages
Satisfactory Essays
• Good Essays

Truss – in engineering a truss consists of two force members only. They typically have five or more triangular units which have a straight member whose ends are connected at joints these can be known as nodes.…

• 782 Words
• 4 Pages
Good Essays
• Good Essays

Have you ever crossed a bridge when driving around your city and thought about how it was constructed or how long did it take to be built or is this bridge really safe and will it ever fall down. Well, I certainly have and I know that I don’t want for a bridge to fall down whenever I am driving or walking across one. It was 6:05 pm, the rush hour in Minneapolis, Minnesota and the unimaginable at the I-35W bridge occurred. On August 1, 2007 the 1,907 foot long bridge collapsed leaving dozens of cars and trucks trapped and in the Mississippi River. The accident left 13 people dead and caused for 145 to be injured. This paper talks about the structural form of the I-35W Bridge, some circumstances that lead to the collapse, why the bridge fell…

• 989 Words
• 4 Pages
Good Essays
• Powerful Essays

An investigation into beam bending and superposition. Being able to analyse how beams bend is an essential tool for all engineers. By using mathematics and material properties, engineers are able to compute structural deformation thus verifying a structures fitness for use. In this experiment a simply supported beam of aluminium is loaded with point forces in three different cases. A clock gauge is positioned in the middle of the beam to measure the deflection. The results of a complex arrangement of forces can be deduced by the superposition of more simple cases. Superposition is possible only when the response of the structure is linear, e.g. when deflection is directly proportional to the applied load. Also the experimental and theoretical deflections of the beam will be compared and a percentage error obtained. There was a second test performed in this investigation demonstrating the influence the 2nd moment of area, also known as the second moment of inertia, had on the load carrying capacity of the beam. The results from test 1 show that it is possible to deduce the deflection of the beam when loaded with point forces by superposition. Results from test 2 show that the deflection of a beam is influenced greatly by its moment of inertia, i.e. with a greater value of inertia there is a smaller deflection.…

• 2138 Words
• 9 Pages
Powerful Essays
• Better Essays

From this it was learned the bridge held 14.4kg which is 140N therefore one Truss held 70N. These calculations helped us understand how our bridge coped with the forces and helped us answer the question of what caused our bridge to fail and where our bridge failed?…

• 2852 Words
• 12 Pages
Better Essays