NT1210
Lab 1.1: Reading Binary
Exercise 1.1.1
Create a mapping similar to Figure 1-1 for the decimal number 2931 using either paper and pencil or a Word document.
10^3 | 10^2 | 10^1 | 10^0 | 1000 | 100 | 10 | 1 |
2 | 9 | 3 | 1 | x | x | x | = 2931
= 2931 x | 2000 + | 900 + | 30 + | 1 |
Exercise 1.1.2
Create a mapping similar to Figure 1-2 for the binary number 110 base 2 using either paper and pencil or a Word document.
110 = 1x4 + 1x2 + 0x1
110 =6
Exercise 1.1.3
Create a mapping similar to Figure 1-2 for the binary number 11 base 2 using either paper and pencil or a Word document.
(1 * 2^3) + (0 * 2^2) + (1 * 2^1) + (1 * 2^0) = 8 + 0 + 2 + 1 = 11
Exercise 1.1.4
Create an expanded mapping similar to Figure 1-3 for the binary number 10010 with base 2 using either paper and pencil or a Word document.
= 0(1) + 1(2) + 0(4) + 0(8) + 1(16)
= 0 + 2 + 0 + 0 + 16 = 18
Exercise 1.1.5
Create an expanded mapping similar to Figure 1-3 for the binary number 11100010 with base 2 using either paper and pencil or a Word document.
= 1(1) + 1(2) + 0(4) + 0(8) + 1(16) + 1(32) + 1(64)
= 1 + 2 + 0 + 0 + 16 + 32 + 64 = 115
Exercise 1.1.6
Using the example in Figure 1-5 and the steps that followed, create a binary conversion for the decimal value 156.
2)156 0
2)78 0
2)39 1
2)19 1
2)9 1
2)4 0
2)2 0
1
= 10011100
Exercise 1.1.7
Using the example in Figure 1-5 and the steps that followed, create a binary conversion for the decimal value 255.
255/2= 127 Remainder 1
127/2=63 Remainder 1
63/2= 31 Remainder 1
31/2=15 Remainder 1
15/2= 7 Remainder 1
7/2 = 3 Remainder 1
3/2= 1 Remainder 1
1/2 = 0 Remainder 1
=11111111
Exercise 1.1.8
Using the example in Figure 1-5 and the steps that followed, create a binary conversion for the decimal value 200.
100|10|1|
2 | 0| 0
2x100+0+0 = 200
1 |1 |0 |0 |1 |0 |0 | 0
128|64 | 32 |16| 8 | 4| 2 | 1
Exercise 1.1.9
Using the binary converter document, create a decimal conversion for the binary value 1001