Top-Rated Free Essay
Preview

NaOH Standardization and Titration of an Unknown Organic Acid

Good Essays
1765 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
NaOH Standardization and Titration of an Unknown Organic Acid
NaOH Standardization and Titration of an Unknown Organic Acid Overview: Methods for counting the number of molecules in a sample is a major emphasis of laboratory work. In this experiment we will use the method of titration to count the number of acid molecules in a solution. Measuring mass is a relatively easy procedure to do in the lab (although a balance is expensive). Counting the number of particles requires more effort. Molecular counting can be done by setting an unknown amount of a substance equal to a known amount of substance. In the titration we will perform in lab this week, you will add OH ions to solution until they are equivalent to the number of H+ ions in solution. The point at which this mole equivalency occurs is known as the equivalence point. An indicator in the solution will change color to signal that the equivalence has been reached (actually, the indicator responds to the slightest excess of OH ions). The color change in a titration is called the endpoint. At the equivalence point of the titration, the moles of OH (base) are equivalent to the moles of H+ (acid) in the sample. The moles of OH added to the solution from a buret are calculated from the concentration of the base (MOH) and the volume of base (VOH) added, as: V (L) n (mol) Lmol MOH OH OH
The lab goal is to determine the molar mass of an unknown monoprotic acid. The grams of acid are determined from weighing the acid and the moles are determined from the titration with NaOH. Because it is a monoprotic acid, the moles of acid are equal to the moles of OH at the endpoint of the titration. n (mol) n (mol) OH acid
Standardization of NaOH: Last week in lab you prepared a NaOH solution with an approximate concentration of 0.1 M. The first task is to determine the exact concentration of that solution by titrating the NaOH against a known amount of acid. The known amount of acid you will use comes from dissolving the solid acid potassium hydrogen phthalate (KHP, FW = 204.2212 g/mol) in 25 mL of H2O. KHP is a large organic molecule, but can be viewed simply as a monoprotic acid. The titration of the KHP with NaOH can be express by the chemical reaction: OH (aq) + KHP(aq) H2O + KP (aq) To standardize (determine the concentration of) your NaOH solution Lmol you will measure volume of NaOH required to reach the titration endpoint. At the equivalence point the moles of NaOH are equivalent to the moles of KHP titrated. n (mol) n (mol) NaOH KHP .Before you titrate a KHP sample, begin with a practice titration of 25 mL of a 0.1 M HCl solution with your NaOH. A practice titration is a good way to begin any titration. It lets you know the approximate concentration of your NaOH solution and the behavior of the indicator at the endpoint. Prepare a buret with your NaOH solution. Recall how you clean the buret first with DI water and then rinse the buret with about 10 mL of your NaOH solution. Drain the rinse NaOH into a large waste beaker at your lab bench. Finally, fill your buret with NaOH,. Be sure to fill the tip of the buret before you use it and make sure there are no bubbles in the tip. With your graduated cylinder measure approximately 25 mL of 0.1M HCl. Record the exact volume you use. Add the HCl to an erlenmyer flask and add three drops of phenolphthalein indicator. Titrate the acid solution with the NaOH. Place the erlenmyer flask under the buret on a white sheet of paper (or towel). Remember to make an initial volume reading before you begin. You should need nearly the same volume of base as you have acid for this titration, because the molarities of each are similar. You can titrate quickly at first, but as you get near the endpoint slow your titrating. Small amounts of titrant can be added by quickly rotating the buret stopcock one revolution as you approach the end point. Even smaller quantities of a single drop can be added as you approach the end point. Remember this is only practice. Don t spend a lot of time on this step. After you have reached the endpoint, the lightest pink color that will persist for 20 seconds, show this solution to your TA. Anything past light pink indicates a solution with excess OH and you will be over counting the moles of acid in solution. After this practice titration, refill your buret, dump your titrated solution down the drain, and rinse your glassware with DI water. Standardization of NaOH with KHP: Prepare a solution with a known number of moles of acid, by weighing exactly, approximately 0.5 grams of the solid acid KHP in a weigh boat. (Do not add KHP to the weigh boat while on the balance!) Add the weighed acid to a large erlenmyer flask. If any of the KHP remains on the weigh boat use your squirt bottle to rinse all of the KHP into the erlenmyer flask. Dissolve the acid in approximately 30 mL of water the exact amount does not matter. Add four drops of phenolphthalein indicator. Titrate the KHP acid solution with the NaOH. Place the erlenmyer flask under the buret on a white sheet of paper (or towel). Remember to make an initial volume reading before you begin. If not all of the KHP is dissolved, you can still begin the titration. Just make sure that all the KHP is dissolved before you reach the titration endpoint. The first titration is always the most difficult because you do not know how carefully you need to add the titrant. In this case, you should be able to add 15 mL of NaOH without passing the endpoint. As you are adding your initial amounts of NaOH,notice the pink color of the indicator right as the NaOH enters the solution. As the pink color begins to persist, slow the titration down. Do not let the buret go below 50 mL during the titration. If you get close to 50 mL, stop the titration, record the volume of the buret and then refill the buret and continue to titrate. The end point of the titration occurs when the solution is the lightest pink color that will persist for 20 seconds. It is very likely that you will overshoot the endpoint on your first try. Don t let this worry you. Record the final volume on the buret. At the equivalence point, you have added the exact number of moles of OH as there were moles of acid initially. The moles of acid (monoprotic) you can determine from the mass of the acid and its molar mass (KHP = 204.2212 g/mol). Before you continue, calculate the approximate concentration of your NaOH solution. Perform a second titration of KHP with NaOH. Weigh and dissolve another 0.5 g sample of KHP and dissolve it in a clean erlenmyer flask. The flask can be wet inside. Why can the Erlenmyer flask be wet when sample is added, but the buret must be carefully rinsed with the solution that will eventually be dispensed? Refill your buret with NaOH and titrate the new KHP sample to its pink endpoint. Do not forget to make an intial buret reading, add indicator and not go past 50 mL on the buret. After the titration, calculate the concentration (molarity) of your NaOH solution. Titrate a third KHP sample with the intent of obtaining a third measurement of your NaOH solution concentration. After tititrating the third sample, calculate the NaOH concentration and compare all three calculations of the NaOH concentrations. If the three measurements of the concentration are the same to within 0.02 M, you may conclude that the concentration of your NaOH is the average of these three measurements. If you have accomplished this precision in your standardization of NaOH, continue to the titration on an unknown acid. If any of the measured NaOH concentrations are more than 0.02 M, you should perform a fourth standardization titration, using another 0.5 g sample of KHP. After examining the four concentration of NaOH, determine if any one concentration is suspect as either too large or too small. You can do this by inspection. However, there are statistical tests (Student T-tests) that will calculate if a data point is an outlier. If we ever team teach this course with Math140 we will use the student T-test at this point. For now, if three concentrations are within 0.02 M then average these three concentrations as the NaOH concentration. If you still don t have three measurements within 0.02 M of each other, perform a fifth standardization with a new sample of KHP. Obtain the NaOH concentration from the fifth titration and average all five measurements to obtain an average NaOH concentration.Titration of an Unknown Acid to Determine Molar Mass: The units of molar mass are g/mol. This intensive property is the ratio of two extensive properties, as is shown in the figure below. To determine the molar mass of your unknown acid, you will perform the titration of the unknown acid in the same way you performed the titration of KHP. Obtain from your TA an unknown acid sample vial. Write your unknown number in your notebook. This sample vial contains two samples of your unknown acid. Weigh the vial and all its contents. Add half of the acid to a clean erlenmyer flask. Reweigh the sample vial to determine how much acid you will be titrating in Trial # 1. Note: There are only two samples of your unknown available. Exercise caution while titrating. Treating the unknown acid in the same way as the KHP sample, titrate to the endpoint and calculate the moles of NaOH require to reach the endpoint. From the mass and mole measurements of the unknown acid, determine the molar mass of the unknown acid. Clean your glassware and repeat the titrtation on the second sample of unknown acid. To report the molar mass of the acid, take an average of the two molar mass measurements. Report the uncertainty as half of the difference between the two mass measurements (ex. if Trial # 1 gives a mass of 240 g/mol and Tiral # 2 gives 256 g/mol the average should be reported as 248 8 g/mol). Before you leave the lab, clean your buret with distilled water then place it upside down in the buret clamp with the stopcock open. All solutions can be placed down the sink. Return your unknown vial to your TA. Finally, turn in your blue notebook pages

You May Also Find These Documents Helpful

  • Good Essays

    Chem Pre-Lab

    • 635 Words
    • 3 Pages

    The number of moles of NaOH solution used in the titration is given by multiplying the volume of NaOH used in the solution (0. 02328 L) with the concentration of NaOH (0.101 M). It should also be…

    • 635 Words
    • 3 Pages
    Good Essays
  • Better Essays

    Titration is a method, which is meant to find the concentration of either an acid or a base by adding a measured amount of it to a known volume and concentration of an acid or base1. Titration starts with a beaker or Erlenmeyer flask containing a very precise volume of the known concentration solution and a small amount of indicator, which is put underneath a burette containing the solution with unknown concentration1. Small drops of the titrant are then added to the known solution and indicator until the indicator changes which means the endpoint has been reached. Single drops of the titrant can sometimes make a permanent or temporary change in the indicator2.…

    • 2337 Words
    • 10 Pages
    Better Essays
  • Powerful Essays

    Diprotic Acid Lab Report

    • 1283 Words
    • 6 Pages

    Once the volume of food acid was found, the number of moles of food acid could be found using n = c x v. The number of moles of food was used was 0.0006 moles.…

    • 1283 Words
    • 6 Pages
    Powerful Essays
  • Better Essays

    6.03 Calorimetry Lab

    • 1068 Words
    • 5 Pages

    In the experiment, standardization of NaOH with HC1 solution is carried out. Solid NaOH is hygroscopic where significant amounts of water vapor can be absorbed. Also, as NaOH is a strong base, significant amounts of atmospheric carbon dioxide can be absorbed too. It is also clear that NaOH cannot serve as a primary standard and thus it needs standardization by a primary or secondary standard. NaOH solutions can be directly titrated versus standardized HCl using phenolphthalein or methyl red indicator. In this case, methyl red is used as an indicator. The colours change from red to completely purple pink indicate the standardization is achieved. If reasonable concentrations of the acid and base are used, very sharp end points can be achieved. The…

    • 1068 Words
    • 5 Pages
    Better Essays
  • Satisfactory Essays

    6.03 Calorimetry Lab

    • 301 Words
    • 2 Pages

    Once divided by two, that value ended up being 6.815 milliliters of NaOH added at the ½ equivalence point pH. In order to estimate the pH at that volume of NaOH being added, two data points around the volume of 6.815 milliliters were…

    • 301 Words
    • 2 Pages
    Satisfactory Essays
  • Satisfactory Essays

    LAB 20C

    • 561 Words
    • 3 Pages

    1. Moles of NaOH = 0.500 mol/L X 0.010525 L = 5.26 x 10-3 mol…

    • 561 Words
    • 3 Pages
    Satisfactory Essays
  • Good Essays

    1. To prepare a standard solution of oxalic acid and use it to standardize an unknown sodium hydroxide solution.…

    • 1882 Words
    • 12 Pages
    Good Essays
  • Satisfactory Essays

    Lab 4 Weak Acid Unknown

    • 304 Words
    • 2 Pages

    After we find the moles of NaOH, we can use that to find the molar mass of each acid.…

    • 304 Words
    • 2 Pages
    Satisfactory Essays
  • Satisfactory Essays

    Determination of Pka

    • 435 Words
    • 2 Pages

    This lab focused on the equilibrium constant, Ka. Ka is associated with chemical properties of acids. The equivalence point will be reached once the moles of OH- equal the moles of HA and once this point is reached, the PH changes very quickly. With the results, a titration curve should be produced.…

    • 435 Words
    • 2 Pages
    Satisfactory Essays
  • Good Essays

    State of Matter Sleuth

    • 579 Words
    • 3 Pages

    3) Molecular weight is equal to grams per mole. The mass of the salt was measured before the titration was carried out.…

    • 579 Words
    • 3 Pages
    Good Essays
  • Good Essays

    Labs

    • 3297 Words
    • 14 Pages

    This lab experiment covers the preparation of standard solution and the acid/base titration. The first part of the lab is to prepare a standard solution of Potassium hydrogen per. A standard solution is a solution of known concentration, in which it is prepared using exacting techniques to make sure that the molarity is to the highest accuracy. The stock solution on the other hand, which is also a base in this experiment, is a large volume of a common reagent prepared…

    • 3297 Words
    • 14 Pages
    Good Essays
  • Satisfactory Essays

    Acid Burn Lab

    • 828 Words
    • 4 Pages

    First, to create 0.5L of 0.2M solution of NaOH, standard 3M NaOH solution was obtained. Next, calculations were performed to determine the amount 3M NaOH necessary to create 0.5L of the 0.2M solution and, as a result, 33.333ml of the 3M solution was measured and poured into a 600ml beaker. The 33.333ml of 3M solution was then diluted with deionized H2O to a volume of 0.5L, thus theoretically resulting in 0.5L of 0.2M NaOH. Next this solution was used…

    • 828 Words
    • 4 Pages
    Satisfactory Essays
  • Good Essays

    Unknown Acid Titration

    • 1249 Words
    • 5 Pages

    The concentration of one solution was determined by its reaction with a standard solution. The molar mass of unknown acids were also calculated. While learning to titrate, I learned several other skills in the process. I learned how to prepare a standard solution of sodium hydroxide, how to standardize a sodium hydroxide solution by using potassium hydrogen phthalate (KHP), how to find the molar masses of unknown organic acids when given whether the acid is monoprotic, diprotic, or triprotic, and how to calculate the molarity of a soft drink. At the same time, other skills were practiced. Skills such as calculating molarity, molar mass and percent error were exercised.…

    • 1249 Words
    • 5 Pages
    Good Essays
  • Better Essays

    The experiment began with the preparation and standardization of NaOH solution. It was calculated that 2.00 grams of NaOH pellets were needed to prepare 0.5 L of 0.1 M NaOH solution. The solution was then standardized by conducting three titration trials. It was calculated that 0.7148 grams of KHP were necessary to neutralize 35 mL of the 0.1 M NaOH. Three samples of KHP were weighed approximating this number (Table 1). Each sample was mixed with 40 mL of deionized water and 2 drops of phenolphthalein in 3 Erlenmeyer flasks. Each flask was then titrated with the NaOH to a light pink endpoint. The volumes of NaOH were recorded, averaged, and the standardized. The molarity of the NaOH was found to be 0.0981.…

    • 1680 Words
    • 7 Pages
    Better Essays
  • Better Essays

    Week One: the experiment started off by preparing 250mL of NaOH solution. About 0.5 grams of NaOH were measured and then inserted into a 250mL volumetric flask. Once the NaOH was in the flask, it was then filled up to the 250mL line using deionized water. After the water was put in the flask, the solution was then mixed well until the NaOH dissolved well in the water. The second solution that was prepared was KHP. This was done by measuring 1 gram of KHP. After that was completed, the KHP was put in a beaker and filled up using 50mL of demonized water and mixed well until the KHP dissolved well in the water. Three drops of the indicator phenolphthalein were put in the KHP solution.…

    • 1661 Words
    • 7 Pages
    Better Essays

Related Topics