Preview

Fruit Fly Chi Square and Intro

Better Essays
Open Document
Open Document
2325 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Fruit Fly Chi Square and Intro
Drosophila melanogaster: Mutant Fruit Flies
Jessica E. Phillips
Genetics 3301
April 13, 2012
Introduction:
Drosophila melanogaster better known as the fruit fly can be found near rotting fruits, vegetables, or anywhere where there is food that has rotted and or fermented. (Potter, 2010) D. melanogaster has four different stages in its life cycle. The first stage of D. melanogaster is the egg which can last for about one day; then turns into a larva. The larva stage last for about 7-8 days. Once the larva mature it will molt twice this period is called an instar. (Flagg, 1979) Instar means that the larva will shed a cuticle, mouth hooks, and spiracles and the period in which it goes through this growth phase of molting. D. melanogaster will go through 3 instars before reaching the pupa stage. (Flagg, 1979) The pupa stage will last for about 6 days after which the adult will eclose. During the pupa stage the pupa will darken and the eyes as well as the wings will appear visible through the casing.
Gregor Mendel created 3 principles as it relates to the laws of genetics. The 3 principles of Mendel’s laws of genetics are the law of dominance, the law of segregation and the law of independent assortment. The law of dominance stated that in a heterozygous condition, the dominant allele will dominate over another allele. This means that the dominant trait or phenotype will be present. The law of segregation states that for any trait or phenotype, the parent alleles will separate and only one allele from each parent will pass to the offspring. (O’Neil, 2011) The law of independent assortment states that different pairs of alleles are passed to each other independently. (O’Neil, 2011) Because of Mendel’s laws, D. melanogaster, is the organism often studied for genetics research. Some of the reason for studying the flies genetically is because they are small and easy to grow in a lab setting. They have a 2 week life cycle and a new generation can be

You May Also Find These Documents Helpful

  • Good Essays

    Kumabjara of Namjbar

    • 667 Words
    • 3 Pages

    1. Simulate Mendel’s experiments using a dihybrid cross, in which he defined the law of independent assortment. Use two physical traits in dragons – Color and body covering. The color locus has two alleles: Green (G) which is dominant, and yellow (g) which is recessive. The skin locus also has two alleles: Scaled (S) is dominant to scaleless (s).…

    • 667 Words
    • 3 Pages
    Good Essays
  • Good Essays

    In addition to wild-type flies, 29 different mutations of the common fruit fly, Drosophila melanogaster, are included in FlyLab. The 29 mutations are actual known mutations in Drosophila. These mutations create phenotypic changes in bristle shape, body color, antennae shape, eye color, eye shape, wing size, wing shape, wing vein structure, and wing angle. For the purposes of the simulation, genetic inheritance in FlyLab follows Mendelian principles of complete dominance. Examples of incomplete dominance are not demonstrated with this simulation. A table of the mutant phenotypes available in FlyLab can be viewed by clicking on the Genetic Abbreviations tab which appears at the top of the FlyLab homepage. When you select a particular phenotype, you are not provided with any information about the dominance or recessiveness of each mutation. FlyLab will select a fly that is homozygous for the particular mutation that you choose, unless a mutation is lethal in the homozygous condition in which case the fly chosen will be heterozygous. Two of your challenges will be to determine the zygosity of each fly in your cross and to determine the effects of each allele by analyzing the offspring from your…

    • 862 Words
    • 4 Pages
    Good Essays
  • Better Essays

    Lab 6 Drophisila Fly

    • 3603 Words
    • 17 Pages

    Drosophila melanogaster are very useful tool in the study of genetics. The gene studied is called apterous, with recessive allele producing very tiny wings and the dominant allele of the same gene leading to wild type wing structure. In this experiment we are hoping to determine phenotypic ratios and dominant vs. recessive traits by cross breeding two different types of Drosophila; such as wild type mutant (red eye) with white eye drosophila and wild type mutant (red eye) with sepia eye drosophila. . Drosophila are most commonly used organism in genetic labs because they have a short life span and genetically speaking they are a very simple organism. The mode of inheritance among traits is easy to figure out as well by applying simple Mendelian tools in this…

    • 3603 Words
    • 17 Pages
    Better Essays
  • Better Essays

    Fruit Fly Lab Report

    • 1270 Words
    • 6 Pages

    This lab was the study of monohybrid as well as dihybrid crosses. A monohybrid cross is the study of a certain trait whereas a dihybrid cross is the study of the mating experiment between two organisms that are identically hybrid for two traits. ( Reference 1 ) This lab was done to determine the genetic mutations after each generation and to observe the ratios. As each generation of fruit flies came to existence, traits would either be different from each fly or certain traits would disappear from existence. The expected ratio for a monohybrid cross was 3:1 and 9:3:3:1 for the dihybrid cross. For the monohybrid cross, eye color was observed to be wildtype, dark red, or white eyed, which was x-linked. (Reference 2) As for the dihybrid cross, both wing shape as well as eye color was observed. The wings were either straight, wildtype, or shriveled, vestigial, depending on…

    • 1270 Words
    • 6 Pages
    Better Essays
  • Good Essays

    Fruit Fly Lab Report

    • 602 Words
    • 3 Pages

    The class was given vials with adult fruit flies of P1 parent generation to look at the traits, one generation was homozygous, wild type eyes and dumpy wings. The other one was homozygous for sepia eyes and normal wings. These were crossed to yield the F1 generation which is crossed to produce the F2 generation.…

    • 602 Words
    • 3 Pages
    Good Essays
  • Good Essays

    Gregor Mendel is an Australian monk, who worked in a garden at a monastery. He experimented with pea plants, and soon became known as the father of genetics. The reason he studied pea plants was because they grow quickly, the traits can be easily observed, and the plant is easy to pollinate. Mendel’s method was to control the pollination of the pea plants and create offspring’s of the two plants that were pollinated together. Using self-pollination and cross pollination, Mendel was able to select plants that had specific traits and observe the traits that appeared in their offspring. The F1 generation is the offspring that is a cross between two parents. The F2 generation is the offspring that is a cross between two individuals in the same F1 generation. A dominant factor is the dominating factor, and the one that masks the effect of the recessive factor for the same characteristic. A recessive factor is one whose effect is taken over by the dominant factor for the same characteristic. Basically, a trait that is controlled by a recessive factor would not appear when paired with a trait controlled by a dominant factor.…

    • 292 Words
    • 2 Pages
    Good Essays
  • Good Essays

    Fruit Fly Lab Report

    • 662 Words
    • 3 Pages

    To perform this study and observe the behaviors and reactions of Drosophila melanogaster and how they respond to different stimuli and repellents, the research members decided to use mutant fruit flies, for this reason they lacked wings, making their manipulation simpler. In order to carry out this study it was necessary to first obtain an adequate number of flies to observe them throughout the weeks. The research members had the flies accompanied with larvae in stock vials, and later transferred these into a new vial containing a medium. After two weeks, when the insects had laid eggs and the previous eggs had hatched, the same process of transferring them into a new vial was repeated. To transfer the flies properly, the new vial contained a media, yeast, and netting, the stock vial was placed on a table where the researchers tapped it so that the flies remained close to the bottom, avoiding their escape, then a new stock tube was placed on the table and the old one was tapped into the funnel that was placed at the opening of this new stock vial, making the flies transfer from the old vial to the new one, a…

    • 662 Words
    • 3 Pages
    Good Essays
  • Powerful Essays

    Fruit Fly Lab Report

    • 2526 Words
    • 11 Pages

    Drosophila melanogaster or more commonly referred to as “fruit flies” have been used for genetic research for over 100 years. During his time at Harvard university, Charles W. Woodworth is credited with being the first to suggest fruit flies be used for genetic research. A century later, fruit flies are the most widely used eukaryotic organism for genetic research (Drosophila). Their ease of use and rapid rate of reproduction has allowed researchers across the globe further our knowledge of genetics.…

    • 2526 Words
    • 11 Pages
    Powerful Essays
  • Better Essays

    Ap Bio Lab Fruit Flies

    • 4015 Words
    • 17 Pages

    Fruit flies have made a huge contribution towards knowledge about genetics, but for most people, they are just annoying insects that are attracted to their fruit. Their scientific name is Drosophila melanogaster, and to scientists, they have been a key to understand many principles of heredity including sex linked inheritance, epistasis, multiple alleles, and gene mapping. Fruit flies were the first organisms to be used for genetic analysis in 1910 by Thomas Hunt Morgan, and ever since, they have been used for genetic experiments (Ashburner).…

    • 4015 Words
    • 17 Pages
    Better Essays
  • Good Essays

    Drosophila, or the fruit fly, is an ideal organism for many laboratory studies. It can easily be observed in a confined space and two flies can reproduce hundreds of offspring. The most important thing about studying fruit flies, however, is the ease with which inherited traits can be observed in them. Heritable traits are those that are expressed in organisms due to genes passed down to them by their parents. The genes can be carried on either the autosomes or the sex chromosomes. The traits themselves can be either dominant or recessive, and are referred to physically as phenotypes and genetically as genotypes. (Hurney, Pesce, Babcock 2005) If one cannot determine the genotype…

    • 828 Words
    • 4 Pages
    Good Essays
  • Satisfactory Essays

    chapter 10 bio. outline

    • 611 Words
    • 3 Pages

    Mendel also performed experiments looking at inheritance patterns of two traits together. From this he formulated the law of independent assortment. A test cross can also be performed to discover if individuals expressing the dominant allele are homozygous or heterozygous. Geneticists today often use Drosophila melanogaster as a test subject. The wild type fruit fly is used to discover inheritance patterns in mutant flies.…

    • 611 Words
    • 3 Pages
    Satisfactory Essays
  • Good Essays

    They thought Mendel’s hereditary determinants were on a locus. They found out that the physical separation of alleles during anaphase I of meiosis accounts for Mendel’s principle of segregation. If the alleles for different genes are located on different chromosomes, they assort independently from one another in meiosis I. This confirmed the principle of independent assortment. Later on, the two scientists came up with the chromosome theory of inheritance, which states that independent assortment happens in metaphase and anaphase of meiosis I. To test the theory of inheritance, scientist Thomas Hunt Morgan used the fruit fly. At one point, Morgan noticed that a male fruit fly had white eyes rather than the wild type red eyes. He concluded that the white eyes resulted from a mutation. He mated a red-eyed female with a mutant white-eyed male and the results showed that all of the F_1 females had red eyes, but the F_1 males had white eyes. This was very peculiar because Mendel already proved that traits are not sex based. Morgan realized that the X chromosome in males and females explained his results. He determined that eye color is carried on the X chromosome and not on the Y chromosome. This is described as sex-linked inheritance. According to the X-linkage hypothesis, a female has two copies of the eye color gene because they have the two X chromosomes, whereas the male fruit flies have the one X chromosome that codes for eye color. The reciprocal cross of pea plants happened on non-sex chromosomes called autosomes. Genes on non-sex chromosomes show autosomal inheritance. Biologists now know that Boveri’s and Sutton's chromosome theory of inheritance was…

    • 600 Words
    • 3 Pages
    Good Essays
  • Good Essays

    The X/Y sex chromosomes and the 2,3,4, autosomes. It is important to know the differences between the two adult sexes in order to record and collect the data accurately. The major sexual differences in Drosophila are apparent in the abdominal segment of the flies. In males, the last abdominal segment of the male is much larger and rounded than that in the female. Another indicator is the presence of sex combs present in males. Male flies has a small, densely packed bristles call sex comb on the outer joints of both forelegs. Females lack sex combs. Therefore, if one sees sex combs on a fly, it is certain that the fly is a male. Female fruit flies remain virgins for approximately six hours after hatching but will mate after the six hour window. It is important for the female flies to be virgin, so one knows which fly genotypes are…

    • 1224 Words
    • 5 Pages
    Good Essays
  • Better Essays

    Fruit Fly Lab Report

    • 1348 Words
    • 6 Pages

    Looking at all of the fruit flies, there is no possible way for the parent flies to be homozygous. If the parent flies were homozygous, both the F1 and the F2 phenotypes would be the same holding a 1:1ratio, instead of the 9:3:3:1 ratio that was observed. The purpose of this experiment was to determine the F1 genotype of fruit fly traits using the phenotypic ratio of the F2 generation and to express these results of the unknown cross through a Chi-square model. After taking data with the Chi-squared value of 5.64, the degrees of freedom were 3 and the p-value was between .05 and .2, it is confident to fail to reject the null hypothesis, which leads the experimenters to believe that the observed phenotypic ratio does significantly deviate from that expected under the assumption of Mendelian inheritance. In the future, exploring more complex animals other than fruit flies, such as mammals or reptiles, would make this experiment a little more difficult, but more interesting as well. Without Mendelian genetics, it would be much more difficult to predict traits in organisms across the living…

    • 1348 Words
    • 6 Pages
    Better Essays
  • Powerful Essays

    Fruit Fly Lab Report

    • 1490 Words
    • 6 Pages

    Drosophila melanogaster is a common fruit fly that has been useful for most experiments in the study of Genetics. The male and the female fruit fly are similar and different in regards to how they look, structurally. They are similar because both genders have a head, thorax, proboscis, antennae, eyes, and mouth parts. However, males are smaller than females and have about five abdominal segments as opposed to the seven that the female has. The life cycle of these fruit flies consist of egg, larvae, metamorphosis, and then adult stages. During the egg stage of their life cycle, the eggs are sunk into the food until they become larvae that spend all of their time eating. After, the larvae go through two molting phases called instars,…

    • 1490 Words
    • 6 Pages
    Powerful Essays