Preview

Application of Semiconductor Nanomaterials in Catalysis and Medical Sciences

Better Essays
Open Document
Open Document
9144 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Application of Semiconductor Nanomaterials in Catalysis and Medical Sciences
Application of Semiconductor Nanomaterials in Catalysis and Medical Sciences

A Scientific Document submitted to
National Center for Catalysis Research Indian Institute of Technology, Chennai for
10th Catalysis orientation programme-2009

By

N.THILLAI SIVAKUMAR

[pic]

Discipline of Inorganic Materials and Catalysis
Central Salt and Marine Chemicals Research Institute
Council of Scientific and Industrial Research (CSIR) GB Marg, Bhavnagar – 364 002
Gujarat, India

CONTENTS

1. Introduction
2. Application of Semiconductor Nanomaterials 2.1 Semiconductor Nanomaterials in Catalysis 2.1.1 Semiconductor Nanomaterials for Environmental Purification 2.1.2 Semiconductor Nanomaterials for Hydrogen Production 2.1.3 Semiconductor Nanomaterials for Green Organic Transformations

3. Semiconductor Nanomaterials in Medical Sciences 3.1 Semiconductor Nanomaterials for Detection of Protein and DNA 3.2 Semiconductor Nanomaterials for Stem Cell imaging
4. Conclusion

1. Introduction

A semiconductor is a material that has an electrical conductivity between a conductor and an insulator. In semiconductors, the highest occupied energy band, valence band is completely filled with electrons and the empty next band is conduction band. The resistivities of the semiconductor can be altered by up to 10 orders of magnitude by doping or external biases. In the case of conductors, that have very low resistivities, the resistance is difficult to alter, and highest occupied energy band is partially filled with electrons and insulator has extremely high resistivities. It is difficult to alter the resistivity through doping or external fields and the band gap between the valence band and conduction band is large. In a metallic conductor, current is carried by the flow of electrons. In semiconductors, current can be carried either by the flow of electrons or by the flow of positively-charged



References: 2. Alexander, E. Angew. Chem.Int. Ed. 2005, 44, 4839. 3. Alivisatos, A. P. J. Phys. Chem. 1996, 100, 13226. 5. Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chem. Rev. 2005, 105, 1025. 6. Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Annu. Rev. Mater. Sci. 2000, 30, 545. 7. Chen, X.; Lou, Y.; Dayal, S.; Qiu, X.; Krolicki, R.; Burda, C.; Zhao, C.; Becker. J. Nanosci. Nanotechnol. 2005, 5, 1408. 8. Li J.; Jin Z. Z. Coordination Chemistry Reviews Accepted proof, 2009. 9. Hoffmann, M.R.; Martin, S.T.; Choi, W.Y.; Bahnemann, D.W. Chem. Rev. 1995, 95, 69. 10. Mills, A.; Davies, R.H.; Worsley, D. Chem. Soc. Rev. 1993, 22, 417. 11. Linsebigler, A.L.; Lu, G.Q.; Yates, J.T. Chem. Rev. 1995, 95, 735. 14. Litter, M.I.; Navio, J.A. J. Photochem. Photobiol. A: Chem. 1994, 84,183. 15. Martin, S.T.; Morrison, C.L.; Hoffmann, M.R. J. Phys. Chem. 1994, 98,13695. 17. Cao, Y.A.; Yang, W.S.; Zhang, W.F.; Liu, G.Z.; Yue, P.L. New J. Chem. 2004, 28 218. 18. Malitson, H. H.; Heath, D. F., “Extraterrestrial Electromagnetic Solar Radiations,” Solar Energy Technology Handbook Part A, W. C. Dickinson and P. N. Cheremisinoff, eds., Marcel Dekker/Butterworths, New York, 1980 pp. 22–25. 20. Murabayashi, M.; Itoh, K.; Suzuki, S.; Kawashima, K.;. Masuda, R. Proc.-Electrochem. Soc. 1993, 93, 131. 22. Sabate, J.; Anderson, M.; Aguado, M.; Gimenez, J.; Cervera- March, S.; Hill Jr, C. G. J. Mol. Catal. 1992, 71, 57. 24. Chen, D.; Ray, A. K. Water Research 1998, 32, 3223. 26. Brezovfi, V.; Blazovfi, A.; Breznan, M.; Kottas, P.; Ceppan, M. Chem. Commun. 1995, 60, 788. 27. Serpone, N.; Borgarello, E.; Harris, R.; Cahill, P.; Borgarello, M.; Pelizzetti, E. Sol. Energy Mater. 1986, 14, 121. 28. Peill, N.J.; Hoffmann, M.R. Environ. Sci. Technol. 1995, 29, 2974. 29. Peill, N.J.; Hoffman, M.R. Environ. Sci. Technol. 1996, 30, 2806. 30. Peill, N.J.; Hoffmann, M.R. Environ. Sci. Technol. 1998, 32, 398. 32. Fijishima, A.; Hashimoto, K.; Watanabe, T. TiO2 photocatalysis: Fundamentals and Applications, BKC, Tokyo, 1999. 33. AQMD, Smog and Health. The south coast air quality management district, http://www. Aqmd.gov/smog/inhealth.html, 1996. 34. Sheethaler, R., synthesis report on health costs due to road traffic-related air pollution-an impact assessment project Austria, france and Switzerland. WHO Regional office for Europe, http://www.Who.dk/london99/transport04.html, 1999. 36. Uchida, S.; Yamamoto, Y.; Fujishiro, Y.; Watanabe, A.; Ito, O.; Sato, T. J Chem Soc- Faraday Trans 1997, 93, 3229. 37. Shangguan, W. F.; Yoshida, A. J Phys Chem B 2002, 106, 12227. 39. Wu, J.H.; Lin, J.M.; Yin, S.; Sato, T. J. Mater Chem 2001, 11, 3343. 41. Kida, T.; Guan, G.Q.; Minami, Y.; Ma, T.L.; Yoshida, A. J Mater Chem 2003, 13, 1186. 42. Fuji, H.; Ohtaki, M.; Eguchi, K.; Arai, H. J. Mol. Catal. A: Chem. 1998, 129, 61. 43. Idriss, B.; Kamat, P.V. J. Phys. Chem. 1995, 99, 9182. 44. Li, X.Z.; Li, F.B.; Yang, C.L.; Ge, W.K. J. Photochem. Photobiol. A: Chem. 2001, 141, 209. 45. Bessekhouad, Y.; Robert, D.; Weber, J.-V. J. Photochem. Photobiol. A:Chem. 2004, 163, 569. 46. Pal, B.; Sharon, M.; Nogami, G. Mater. Chem. Phys. 1999, 59, 254. 47. Lo, S.C.; Lin, C.F.; Wu, C.H.; Hsieh, P.H. J. Hazard. Mater. 2004, B 114, 183. 48. Zorn, M.E.; Tompkins, D.T.; Zeltner, W.A.; Anderson, M.A. Appl.Catal. B: Environ. 1999, 23, 1. 52. Bond, G. C.; Tahir, S. F. Appl. Catal. 1991, 71, 1. 53. Deo, G.; Wachs I. E.; Haber. J. Crit. Rev. Surf. Chem. 1994, 4, 141. 54. Taramasso, M.; Perego, G.; Notari, B. US Patent, 4410 501, 1983. 55. Vannice, M. A.; Garten, R. L. J. Catal. 1979, 56, 236. 56. Edwards, J. C.; Thiel, C. Y.; Benac, B.; Knifton, J. F. Catal. Lett. 1998, 51, 77. 57. Baiker, A.; Dollenmeier, P.; Glinski, M.; Reller, A. Appl. Catal. 1987, 35, 351. 60. Kickelbick, G. Prog. Polym. Sci. 2003, 28, 83. 61. Ortiz-Islas, E.; LPpez, T.; GPmez, R.; Navarrete, J.; Aguilar, D. H.; Quintana, P.; Picquart, M. Appl. Surf. Sci. 2005, 252, 839. 62. Pizzio, L. R.; CRceres, C. V.; Blanco, M. N. Appl. Surf. Sci. 1999, 151, 91. 63. Serpone, N.; Jamieson, M. A.; Isalvio, F.; Takats, P. A.; Yeretsian, L.; Ufford, J. R. Coord. Chem. Rev. 1984, 56, 87. 64. Ortiz-Islas, E.; Lopez, T.; Gomez, R.; Picquart, M.; Aguilar, D. H.; Quintana, P. Appl. Surf. Sci. 2005, 252, 853. 65. Popa, A.; Sasca, V.; Kisˇ, E. E.; Marinkovic´-Neducˇin, R.; Bokorov, M. T.; Halasz, J. J. Optoelectron. Adv. Mater. 2005, 7, 3169. 66. Dhanashri, P. S.; Josena, J.; Veerappan, V. B.; Katsuhiko, A.; Pavuluri, S.; Sivan, V.; Shivappa, B. H.; Ajayan, V. Chem. Eur. J. 2008, 14, 3200. 67. Benjaram, M. R.; Meghshyam, K. P. Chem. Rev. 2009, 109, 2185. 68. Rosenberg, D. J.; Coloma, F.; Anderson, J. A. J. Catal. 2002, 210, 218. 71. Reddy, B. M.; Sreekanth, P. M.; Lakshmanan, P.; Khan, A. Syn. Commun. 2004, 34, 1839. 72. Gregorio, F. D.; Keller, N.; Keller, V. J. Catal. 2008, 256, 159. 75. Emerich, D.F.; Thanos, C.G. Expert Opin. Biol. Ther. 2003, 3, 655. 76. Chen-Zhong, L.; Yali, L.; John, H. T. L. Anal. Chem. 2005, 77, 478. 77. Wabuyele, M. B.; Vo-Dinh, T. Anal. Chem. 2005, 77, 7810-7815. 78. So, M.K.; Xu, C.; Loening, A. M.; Gambhir, S. S.; Rao, J. Nat. Biotechnol. 2006, 24, 339. 79. Cao, Y. C.; Jin, R.; Mirkin, C. A. Science 2002, 297, 1536. 80. Cao, Y. C.; Jin, R.; Nam, J.-M.; Thaxton, C. S.; Mirkin, C. A. J. Am. Chem. Soc. 2003, 125, 14676. 81. Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Science 1998, 281, 2013. 82. Dorfman, A.; Kumar, N.; Hahm, J.I Langmuir 2006, 22, 4890. 83. Yichun, L.; Mingya, Z.; Guiye, S.; Yajun, L.; Baiqu, H.; Guoliang, Y. J. Phys. Chem. B 2008, 112, 6484. 84. Slack, J.M.W. Science 2000, 287, 1431. 86. Blue, J.W.M.; Kraitchma, D.L. Curr. Pharm. Biotechnol. 2004, 5, 567. 88. Dutz, S.; Wilfried, A.; Rudolf, H. J.Magn. Magn. Mater., 2007, 311, 51-54. 89. Lawaczeck, R.; Menzel, M.; Pietsch, H.; App. Organmetallic Chem, 2004, 18, 506. 90. Emerit, J.C.; Beaumont, C.; Trivin, F.; Trivin. Biomed. Pharmacother, 2001, 55, 333. 91. Wang, F. H.; Lee, I. H.; Holmström, N.; Yoshitake, T.; Kim, D. K.; Muhammed, M.; Frisén, J.; Olson, L.; Spenger, C.; Kehr, J. Nanotechnology 2006, 17, 1911. 92. Christof, M. N.; Bülent, C. Angew. Chem. Int. Ed. 2001, 40, 3685. 95. Timothy, J.; Raheleh, B.; Daniela, P.; Rachael, P.; Mo, I.; Alexander, M. S. Biomaterials 2007, 28, 4717. 97. Bhranti, S. S.; Paul, A. C.; Eduardo, K. M.; Michael, A. S.; Jeremy, J. M. Nano Lett. 2007, 7, 3071.

You May Also Find These Documents Helpful