Preview

3-Dimensional Carbon Nanotube for Li-Ion Battery Anode

Powerful Essays
Open Document
Open Document
5654 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
3-Dimensional Carbon Nanotube for Li-Ion Battery Anode
3 Dimensional Carbon Nanotube for Li-Ion Battery Anode (Journal of Power Sources 219 (2012) 364-370)

Chiwon Kang1‡, Indranil Lahiri1‡, Rangasamy Baskaran2, Won-Gi Kim2,
Yang-Kook Sun2, Wonbong Choi1, 3*

1Nanomaterials and Device Laboratory, Department of Mechanical and Materials Engineering, Florida International University; 10555 West Flagler Street, Miami, FL 33174, USA
2Department of Energy Engineering, Hanyang University; 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Korea
3Department of Materials Science and Engineering, University of North Texas; North Texas Discovery Park 3940 North Elm St. Suite E-132, Denton, TX 76207, USA

Corresponding Author
*Email: choiw@fiu.edu
Author Contributions
‡These authors contributed equally.

Abstract
Carbon nanotubes, in different forms and architectures, have demonstrated good promise as electrode material for Li-ion batteries, owing to large surface area, shorter Li-conduction distance and high electrical conductivity. However, practical application of such Li-ion batteries demands higher volumetric capacity, which is otherwise low for most nanomaterials, used as electrodes. In order to address this urgent issue, we have developed a novel 3-dimensional (3D) anode, based on multiwall carbon nanotubes (MWCNTs), for Li-ion batteries. The unique 3D design of the electrode allowed much higher solid loading of active anode material, MWCNTs in this case and resulted in more amount of Li+ ion intake in comparison to those of conventional 2D Cu current collector. Though one such 3D anode was demonstrated to offer 50% higher capacity, compared to its 2D counterpart, its ability to deliver much higher capacity, by geometrical modification, is presented. Furthermore, deposition of amorphous Si (a-Si) layer on the 3D electrode (a-Si/MWCNTs hybrid structure) offered enhancement in electrochemical response. Correlation between electrochemical performances and



References: [1] T. Nagaura, K. Tozawa, Prog. Batteries Sol. Cells. 9 (1990) 209. [2] L.F. Nazar, O. Crosnier, Anodes and Composite Anodes: An Overview, in: G.-A. Nazri, G. Pistoia (Eds.), Lithium batteries: science and technology, Springer, New York, 2004, pp. 112-115. [3] M [4] R.A. Huggins, Advanced Batteries Materials Sciences Aspects, Springer, New York, 2010. [5] D. Larcher, S. Beattie, M. Morcrette, K. Edstroem, J.C. Jumas, J.M. Tarascon, J. Mater. Chem. 17 (2007) 3759-3772. [6] M.H. Park, M.G. Kim, J.B. Joo, K.T. Kim, J.Y. Kim, S.H. Ahn, Y. Cui, J.P. Cho, Nano. Lett. 9 (2009) 3844-3847. [7] C.K. Chan, H.L. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, Nat. Nanotechnol. 3 (2008) 31-35. [8] P [9] E. Hosono, S. Fujihara, I. Honma, H. Zhou, Electrochem. Commun. 8 (2006) 284-288. [10] B. Varghese, M.V. Reddy, Z. Yanwu, C.S. Lit, T.C. Hoong, G.V.S. Rao, B.V.R. Chowdari, A.T.S. Wee, C.T. Lim, C.-H. Sow, Chem. Mater. 20 (2008) 3360-3367. [11] E.J [12] G. Che, B.B. Lakshmi, E.R. Fisher, C.R. Martin, Nature. 393 (1998) 346-349. [13] A.L.M. Reddy, M.M. Shaijumon, S.R. Gowda, P.M. Ajayan, Nano. Lett. 9 (2009) 1002–1006. [14] A. Varzi, C. Täubert, M. Wohlfahrt-Mehrens, M. Kreis, W. Schütz, J. Power. Sources. 196 (2011) 3303-3309. [15] B.J [16] I. Lahiri, S.W. Oh, J.Y. Hwang, S.J. Cho, Y.K. Sun, R. Banerjee, W.B. Choi, ACS. Nano. 4 (2010) 3440-3446. [17] I. Lahiri, S.M. Oh, J.Y. Hwang, C.W. Kang, M.S. Choi, H.T. Jeon, R. Banerjee, Y.K. Sun, W.B. Choi, J. Mater. Chem. 21 (2011) 13621-13626. [18] Y. Gogotsi, P. Simon, Science. 34 (2011) 917-918. [19] C [20] H. Zhang, X. Yu, P.V. Braun, Nat. Nanotechnol. 6 (2011) 277-281. [21] S.K. Cheah, E. Perre, M. Rooth, M. Fondell, A. Hårsta, L. Nyholm, M. Boman, T. Gustafsson, J. Lu, P. Simon, K. Edström, Nano. Lett. 9 (2009) 3230-3233. [22] Y.Q. Zhang, X.H. Xia, X.L. Wang, Y.J. Mai, S.J. Shi, Y.Y. Tang, C.G. Gu, J.P. Tu, J. Power. Sources. 213 (2012) 106-111. [23] L.F. Cui, Y. Yang, C.M. Hsu, Y. Cui, Nano. Lett. 9 (2009) 3370-3374. [24] P.-C [26] S.V. Lomov, L. Gorbatikh, I. Verpoest, Carbon. 49 (2011) 2079-2091. [27] I. Lahiri, R. Seelaboyina, J.Y. Hwang, R. Banerjee, W. Choi, Carbon. 48 (2010) 1531-1538. [28] B. Gao, C. Bower, J.D. Lorentzen, L. Fleming, A. Kleinhammes, X.P. Tang, L.E. McNeil, Y. Wu, O. Zhou, Chem. Phys. Lett. 327 (2000) 69-75. [29] H.-C. Shin, M. Liu, B. Sadanadan, A.M. Rao, J. Solid. State. Electrochem. 8 (2004) 908-913. [30] Z. Iqbal, S. Vepiek, J. Phys. C: Solid. State. Phys. 15 (1982) 377-392. [31] C.d.l. Casas, W. Li, J. Power Sources. 208 (2012) 74-85. [32] G [33] E. Frackowiak, S. Gautier, H. Gaucher, S. Bonnamy, F. Beguin, Carbon. 37 (1999) 61-69. [34] Y.T. Lee, J. Park, Y.S. Choi, H. Ryu, H.J. Lee, J. Phys. Chem. B. 106 (2002) 7614-7618. [35] S. Bhattacharya, A.R. Riahi, A.T. Alpas, J. Power. Sources. 196 (2011) 8719- 8727. [36] I [37] I. Lahiri, D. Lahiri, S. Jin, A. Agarwal, W.B. Choi, ACS. Nano. 5 (2011) 780-787.

You May Also Find These Documents Helpful