Preview

Effect of the Nature of Different Substrates on the Rate of Cellular Respiration of Yeast

Good Essays
Open Document
Open Document
842 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Effect of the Nature of Different Substrates on the Rate of Cellular Respiration of Yeast
Cellular respiration is defined as an enzyme mediated process in which organic compounds such as glucose is broken down into simpler products with the release of energy (Duka, Diaz and Villa, 2009). It is a series of metabolic processes and oxidation-reduction reactions. Oxidation of substrates, such as glucose, is a fundamental part of cellular respiration (Mader, 2009). As a catabolic process, it may or may not require the presence of oxygen. The process that requires oxygen is called aerobic respiration while the process that does not require the presence of oxygen is called anaerobic respiration. (Duka, et.al. 2007)
Despite of its low yield of only two ATP (energy used by the cells to perform its duties), anaerobic respiration is essential because it continuously synthesizes ATP albeit oxygen is temporarily in short supply.
Although anaerobic respiration synthesizes a low yield of ATP (which is the energy used by the cell enables it to perform its duties), it is essential because it is a way to produce ATP even though oxygen is temporarily in short supply. Though this process brings benefits usually, these are accompanied by drawbacks. One of these downsides is the formation of lactate in the muscles because of “oxygen debt”, causing it to “burn” and eventually fatigue, until pyruvate is reduced from lactate (Madur, 2009).
Anaerobic respiration can be further divided into two types; namely, alcohol fermentation and lactic acid fermentation. In alcohol fermentation, pyruvate (product of glucose in glycolysis) is converted to 2 molecules of ethanol (C2H5OH) and 2 molecules of carbon dioxide (CO2) while in lactic acid fermentation, pyruvate is reduced directly into lactic acid (Campbell and Reece, 2008). A good example of organism which produces ethyl alcohol and carbon dioxide through the process of alcohol fermentation is yeast (Madur, 2009).
As a unicellular fungus, yeast is also an example of a facultative anaerobe, which depicts an organism with

You May Also Find These Documents Helpful

  • Good Essays

    When muscle activity is needed for several minutes, or even hours, aerobic respiration is the essential ATP source. Research the following regarding aerobic respiration.…

    • 361 Words
    • 2 Pages
    Good Essays
  • Good Essays

    Respirationlabbackground

    • 733 Words
    • 2 Pages

    Aerobic cellular respiration is a pivotal process in which organisms carry out in order to sustain life. It is characterized by the release of energy from organic compounds by means of chemical oxidation within the mitochondria of the cell. The reactants are glucose and oxygen, and after a series of complex steps, the products of carbon dioxide, water, and ATP + heat are released. Thus, cellular respiration is an exergonic process, since heat energy is released in order to do cellular work. The overall process can be encapsulated by the following equation: C6H12O6 + CO2 6CO2+ 6H2O+ 586 kilocalories of energy/mole of glucose oxidized. This reaction seems very straightforward, however there are numerous enzyme-mediated reactions that occur within it that are not so perceptible from the simplified equation. Cellular respiration consists of three major stages: The first is Glycolysis; (occurring in the cytosol) in which chemical energy is harvested by oxidizing glucose into two 3 carbon molecules of pyruvate, and thus producing a net of 2 ATP molecules through substrate-level phosphorylation, as well as a net of 2 NADH molecules. Subsequently, the Krebs Cycle commences after 2 pyruvate molecules are converted to 2 Acetyl CoA molecules in the intermembrane space of the mitochondria. During the Krebs Cycle (occurring in the mitochondrial matrix)4 CO2 molecules are released, 1 ATP molecule is formed (for each turn of the cycle), and the reduced forms of 6 NADH and 2 FADH carry the electrons to the next step: the Electron Transport Chain. This occurs in the inner membrane of the mitochondria, and consists of many electron carriers that pass electrons (donated by NADH and FADH2) along through a series of redox reactions. At the end of the chain, oxygen acts as a final electron acceptor and it reduced them to form water. A proton motive force, or H+ gradient,…

    • 733 Words
    • 2 Pages
    Good Essays
  • Good Essays

    Under anaerobic conditions Fermentation is the metabolic pathway that regenerates the supplu of NAD+ for glycolysis…

    • 457 Words
    • 2 Pages
    Good Essays
  • Satisfactory Essays

    Cellular respiration and fermentation produce energy in the form of ATP and key intermediates needed for anabolic reactions.…

    • 668 Words
    • 3 Pages
    Satisfactory Essays
  • Good Essays

    1 Two critical ingredients required for cellular respiration are glucose and oxygen. Cellular Respiration, process in which cells produce the energy they need to survive. In cellular respiration, cells use oxygen to break down the sugar glucose and store its energy in molecules of adenosine triphosphate (ATP). Cellular respiration is critical for the survival of most organisms because the energy in glucose cannot be used by cells until it is stored in ATP. Cells use ATP to power virtually all of their activities—to grow, divide, replace worn out cell parts, and execute many other tasks. Cellular respiration provides the energy required for an amoeba to glide toward food, the Venus fly trap to capture its prey, or the ballet dancer to execute…

    • 354 Words
    • 2 Pages
    Good Essays
  • Good Essays

    All cells need energy all the time, and their primary source of energy is ATP. The methods cells use to make ATP vary depending on the availability of oxygen and their biological make-up. In many cases the cells are in an oxygen-rich environment. For example, as you sit and read this sentence, you are breathing in oxygen, which is then carried throughout your body by red blood cells. But, some cells grow in envi¬ronments without oxygen (yeast in wine-making or the bacteria that cause botulism in canned food), and occasionally animal cells must function without sufficient oxygen (as in running sprints). In this activity you will begin to look at the aerobic and anaerobic processes that are…

    • 1212 Words
    • 5 Pages
    Good Essays
  • Satisfactory Essays

    released by the breakdown of glucose is stored in the high energy phosphate bonds of…

    • 4535 Words
    • 19 Pages
    Satisfactory Essays
  • Powerful Essays

    Unit two Biology

    • 7492 Words
    • 30 Pages

    ii Describe how anaerobic respiration in yeast and mammalian muscle cells differs. b Discuss the commercial uses of anaerobic respiration in yeast cells. c i What do you understand by the term ‘oxygen debt’? ii Describe the fate of the product formed in respiring muscle cells during vigorous exercise. 21 [2 marks] [2 marks] [4 marks] [7 marks] [2 marks] [2 marks] [8 marks] [3 marks] [5 marks] [2 marks] [3 marks] [2 marks] [3 marks]…

    • 7492 Words
    • 30 Pages
    Powerful Essays
  • Good Essays

    Cellular Respiration Lab

    • 452 Words
    • 2 Pages

    The two types of fermentation that are well known are alcoholic fermentation as well as lactic acid fermentation. Fermentation is vital for many organisms, such as yeast and bacteria, because it allows them to obtain energy required to carry on life processes. Alcoholic fermentation is especially important for human beings, as it is used to produce alcoholic beverages, bread, and many other everyday items that are consumed (Alba-Lois, 2010). On the other hand, lactic acid is a waste product of certain bacteria (Lactobacillales), which is utilized to create many dairy products such as yogurt and cheese. In addition, humans can resort to lactic acid fermentation when oxygen is limited, so it is used as an extra source to obtain oxygen. In our experiment we will be using yeast, a single-celled organism that utilizes sugar as a food source, and it produces energy substances through the breakdown of sugar molecules. Specifically, the type of sugar as a source of food, impacts the speed of fermentation in yeast. In this lab, we will calculate the rate of fermentation in yeast with different solutions of sugar, such as sucrose, fructose, and lactose with glucose being the control. It is important to humans that the yeast uses the best sugar source during fermentation, as it creates important everyday items we consume like bread, alcohol, and…

    • 452 Words
    • 2 Pages
    Good Essays
  • Better Essays

    Sugars are vital to all living organisms. The eukaryotic fungi, yeast, have the ability to use some, but not all sugars as a food source by metabolizing sugar in two ways, aerobically, with the aid of oxygen, or anaerobically, without oxygen. The decomposition reaction that takes place when yeast breaks down the hydrocarbon molecules is called cell respiration. As the aerobic respiration breaks down glucose to form viable ATP, oxygen gas is consumed and carbon dioxide is produced. This lab focuses on studying the rate of cellular respiration of saccharomyces cerevisiae, baker’s yeast, in an aerobic environment with glucose, sucrose, lactose, artificial sweetener, and water as a negative control. A CO2 Gas Sensor Probe is used to measure the amount carbon dioxide produced as the cellular respiration occurs which is proportional to how much of the molecule is decomposed. For this experiment water is used as a treatment control to provide a baseline for all the other treatments. To ensure the validity of the experiment, the amount of time the yeast was exposed to the sugars, the designated pipets for each sugar, the amount of sugar tested, and the temperature of the yeast culture were monitored to be the same throughout the experiment.…

    • 844 Words
    • 4 Pages
    Better Essays
  • Powerful Essays

    Some knowledge that is needed before performing this lab are as follows: First of all, cellular respiration is the metabolic processes whereby certain organisms obtain energy from organic molecules. This process includes glycolysis, the Krebs cycle, and the Electron Transport Chain. Glycolysis is a process that takes place in te cytosol and it oxidizes glucose into two pyruvate. Glycolysis also makes ATP and NADH. The Krebs Cycle occurs in the mitochondria and this process takes the pyruvate and breaks it down into carbon dioxide. But it also produces 3 CO2, 1 ATP, 1 FADH2, and 4 NADH. The electron transport chain takes place in the inner mitochondrial membrane nd creates H+ gradients and 36 ATP from glucose (Campbell, 2008).…

    • 1790 Words
    • 8 Pages
    Powerful Essays
  • Good Essays

    Cellular respiration is the process that mainly important in our daily life and supply energy to your body. The main purpose is to turn food into usable chemical energy called ATP. Your body can use ATP as a source of energy to function. Cellular respiration is also the procedure by which cells in plants and creatures separate sugar and transform it into energy, which is then used to perform work at the cell level. The reason for cell breath is straightforward: it gives cells the vitality they have to work.…

    • 514 Words
    • 3 Pages
    Good Essays
  • Good Essays

    Cell Energy

    • 1057 Words
    • 5 Pages

    The main function of cellular respiration is to generate ATP for cellular work; it is the process of harvesting chemical energy from organic fuel and converting it to ATP energy. The three stages of cell respiration include: Glycolysis, Citric Acid Cycle, and Electron Transport(Simon, Reece, & Dickery, 2010).…

    • 1057 Words
    • 5 Pages
    Good Essays
  • Powerful Essays

    Aerobic cellular respiration is the release of energy from organic compound from organic compounds by metabolic chemical oxidation in the mitochondria within each cell. Cellular respiration involves a series of enzyme-mediated reactions. The equation below shows the complete oxidation of glucose. Oxygen is required for this energy-releasing process to occur.…

    • 1687 Words
    • 7 Pages
    Powerful Essays
  • Good Essays

    science

    • 810 Words
    • 4 Pages

    Therefore, for simple fermentations, the metabolism of 1 molecule of glucose has a net yield of 2 molecules of ATP. Cells performing respiration synthesize much more ATP but this is not considered part of glycolysis. Eukaryotic aerobic…

    • 810 Words
    • 4 Pages
    Good Essays