Preview

solutions to homework-1

Powerful Essays
Open Document
Open Document
1845 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
solutions to homework-1
ISyE 6201: Manufacturing Systems
Instructor: Spyros Reveliotis
Solutions to Homework 1
A.
Chapter 2, Problem 4.
(a)
D = 60 units/wk × 52 wk/yr = 3120 units/yr h = ic = 0.25/yr ×$0.02 = $0.005/ yr
A = $12
2AD
2 × 12 × 3120
Q∗ =
=
= 3869.88 ≈ 3870 h 0.005
The time between orders is given by
3870
Q∗
=
= 1.24 yr = 14.88 mo
T∗ =
D
3120
(b)
D
3120 units/yr
= $12
= $9.67/yr
Q
3870 units
Q
3870 units
Holding cost is h =
× $0.005/yr = $9.675/yr.
2
2
The costs are essentially the same. This is always true in the case of the EOQ model.
Set up cost is A

(c) The problem could be where to store all the items. If we were to order 1.24 years worth of styrofoam ice chests at a time it could take up a lot of room.
Chapter 2, Problem 5.
(a) Total (holding plus setup) cost would be
T C = hQ/2+DA/Q = ($0.005/yr)(3870units)/2+(6240units/yr)($12)/(3870units) = $29.02/yr
(b) The optimum cost would be



2ADh =

2(12)(6240)(0.005) = $27.36/yr.

(c) Using the wrong value for the demand (100% forecast error) in the EOQ formula results in an increase in cost of only 6%. EOQ is quite robust with respect to parameter values.
Chapter 2, Problem 6.
(a) The EOQ with 60 per week was computed to be 3,870 and the optimal reorder period was
1.24 years or 14.88 months. The closest power of two is 16 months or 1.33 years with a cost of
T C(1.33) = T Dh/2 + A/T = (1.33yr)(3120/yr)($0.005/yr)/2+$12/1.33yr=$19.37/yr
The power of two on the other side of 14.88 mo is 8 mo or 0.67 yr with a cost of
T C(0.67) = T Dh/2 + A/T =(0.67yr)(3120/yr)($0.005/yr)/2+$12/0.67yr=$23.20/yr

1

(b) The minimum cost without the power of two restriction is

2ADh = 2(12)(3120)(0.005) = $19.35/yr. so 16 months has a cost that is only 0.1% over the optimal while the 8 month solution is around
20% over optimal. The total cost in the EOQ model is relatively insensitive to the order quantity used. Since the order period is directly proportional to the order

You May Also Find These Documents Helpful

  • Powerful Essays

    the cost) of each one is uncertain for a variety of reasons. First, future allowance prices…

    • 1441 Words
    • 6 Pages
    Powerful Essays
  • Good Essays

    QAT1 Task 3 309

    • 611 Words
    • 3 Pages

    Holding cost rate = 5.5% Holding cost (Ch) = $375 (5.5) = $20.62 *Holding cost is the per unit cost of inventory multiplied by the holding cost rate…

    • 611 Words
    • 3 Pages
    Good Essays
  • Satisfactory Essays

    56 - 8 = 2t + t ==> 3t = 48 ==> t = 16 years…

    • 374 Words
    • 2 Pages
    Satisfactory Essays
  • Satisfactory Essays

    for 22 years. How much will he have after 22 years, if the interest rate is 2.85%,…

    • 1243 Words
    • 5 Pages
    Satisfactory Essays
  • Good Essays

    QAT 3

    • 553 Words
    • 3 Pages

    Per Unit Cost of inventory = $425 Holding cost rate = 4.5% Holding cost (Ch) = $425 (.045) = $19.12…

    • 553 Words
    • 3 Pages
    Good Essays
  • Satisfactory Essays

    Fi 360 Week 2

    • 418 Words
    • 2 Pages

    d. Approximately how many years will it take for the account to reach $25,000? e. If the interest rate doubles to 14%, how many years will pass before you reach your $25,000 target?…

    • 418 Words
    • 2 Pages
    Satisfactory Essays
  • Satisfactory Essays

    SCM 366 HW1

    • 517 Words
    • 1 Page

    e. What would the cost per order (the ordering cost) need to be in order for a 500 gallon order to have annual holding and ordering costs of $900.00?…

    • 517 Words
    • 1 Page
    Satisfactory Essays
  • Good Essays

    MgtOp 340 Final Exam Notes

    • 5984 Words
    • 33 Pages

    *15,000 No names: 2. A product for Simpson’s Stored has an annual demand of 72,000 units. The setup cost per order is $75, and the annual holding cost percentage is 40%. The product is purchased for $60 and…

    • 5984 Words
    • 33 Pages
    Good Essays
  • Good Essays

    Final 1

    • 1197 Words
    • 5 Pages

    C. 21.90 years $60,000 = $9,000 × (1 + .10)t; t = 19.90 years Total time = 2 + 19.90 = 21.90 years…

    • 1197 Words
    • 5 Pages
    Good Essays
  • Satisfactory Essays

    Topic: Economic Order Quantity: Determining How Much to Order Difficulty: Moderate AACSB: Analytic Skills 5) Refer to the information above. What is the optimal number of orders per year?…

    • 1687 Words
    • 12 Pages
    Satisfactory Essays
  • Good Essays

    25. How long will it take to double your savings at 5 percent compounded semi-annually? D. 14.04…

    • 1166 Words
    • 4 Pages
    Good Essays
  • Good Essays

    Mat 540 Final Exam Paper

    • 778 Words
    • 4 Pages

    $445.00 (4-11) To the closest year, how long will it take $200 to double if it is deposited and earns the following rates?…

    • 778 Words
    • 4 Pages
    Good Essays
  • Good Essays

    Optimal Stocking Quantity: 584 Expected profit at Optimal Stocking Quantity: $331.43 B. Verify that the value derived in part (a) is consistent with the optimal stocking quantity in the…

    • 850 Words
    • 5 Pages
    Good Essays
  • Satisfactory Essays

    Mat 221 Week 4 Assignment

    • 390 Words
    • 2 Pages

    Then I will simplify 220+2/4 Reduce to the lowest terms 220+1/2 $220.50 This is the answer. This is the value of the investment after one year.…

    • 390 Words
    • 2 Pages
    Satisfactory Essays
  • Satisfactory Essays

    Qat 4

    • 373 Words
    • 1 Page

    Jason Walthour Student ID 305059 QAT Task 3 Order size for Company A. To find the order size for Company A you need to use the economic order quantity model. This will give the smallest total cost to the company. First you need to find the holding cost. To find the holding cost you multiply the annual holding cost rate by the unit cost of the item (Ch=IC). In this example the annual holding cost rate is 3% and the unit cost is $500 (Ch=3%X$500 or Ch=$15). Now that you have the holding cost you can find the optimal order size. To find the optimal order size you take the square root of 2 times the demand times the ordering cost divided by the holding cost. Q*= the square root of 2(D)(Co)/Ch or Q*= the square root of 2(400,000)(42)/15. When you complete this equation you get 1,496.66. Because you can not create a partial laptop you need to round up. Thus giving you 1,497 laptops as the optimal ordering size.…

    • 373 Words
    • 1 Page
    Satisfactory Essays