Lab Section 6
E. Coli Genetic Transformation with pGLO Plasmid
Introduction:
Genetic transformation is where one organism takes on a characteristic from another organism (Bacterial Transformation 2013). For this experiment we used the bacteria E. Coli to take in foreign jellyfish DNA which will allow it to change genetic material. This experiment determines the effects that the plasmid pGLO has in transferring the Green Florescent Protein found in a jellyfish into the bacteria. It determines whether or not pGLO acts successfully as a vector to move genes from one organism to the E. Coli organism (Federoff and Wagner 2014). If the E. Coli is a competent organism, meaning it allows for the uptake of foreign DNA, then the vector will successfully be able to transfer the Green Florescent Protein into the bacteria’s cells (Weedman). There are four separate plates in which we are conducting the experiment. Three of the four contain the antibiotic ampicillin which the pGLO is immune to. We use ampicillin to determine if the pGLO actually works by using it to kill off all of the cells that did not obtain any of the pGLO. Only one of the four plates contains the sugar arabinose which is needed to turn on the GFP gene (Weedman). Then there is one plate that is used as the control, and it only contains the LB which is needed for any bacteria to grow. All of the plates are necessary to prove that the pGLO actually has the proper effect on the E. Coli cells. The results of the plate with all of necessary components for genetic transformation will be the florescent effect (Weedman).
Materials and Methods:
In Weedman’s genetic transformation experiment, we attempted to determine whether pGLO was a successful plasmid to transfer GFP into E. Coli DNA. The first thing we did was obtain vinyl gloves to protect us from the E. Coli that we worked with throughout the entire lab. Then we obtained two micro centrifuge tubes and labeled one +pGLO and the