Top-Rated Free Essay
Preview

biology metabolism

Better Essays
1435 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
biology metabolism
What is metabolism? All living things must have an unceasing supply of energy and matter. The transformation of this energy and matter within the body is called metabolism. Metabolism includes two different types: catabolism and anabolism. Catabolism is destructive metabolism. Typically, in catabolism, larger organic molecules are broken down into smaller constituents. This usually occurs with the release of energy. Anabolism is constructive metabolism. Typically, in anabolism, small precursor molecules are assembled into larger organic molecules. This always requires the input of energy. Anabolism is the synthesis of complex molecules from precursors. This includes synthesis of proteins, carbohydrates, nucleic acids and lipids, usually from their building block monomers. Catabolism is the breakdown of complex molecules into smaller precursors from which they are synthesized. It is a reversed process of anabolism. When cells have excess resources such as food and extra energy, anabolism occurs to store unused nutrients for later use. When cells are deficient for food or energy, catabolism occurs to break down the stored nutrients for the body to use. Glycolysis is the catabolic process in which glucose is converted into pyruvate via ten enzymatic steps. There are three regulatory steps, each of which is highly regulated. There are two phases of Glycolysis. The first is known as the "priming phase," because it requires an input of energy in the form of 2 ATPs per glucose molecule. The second phase is known as the "pay off phase,” because energy is released in the form of 4 ATPs, 2 per glyceraldehyde molecule. The end result of Glycolysis is two new pyruvate molecules which can then be fed into the Citric Acid cycle (also known as the Kreb's Cycle) if oxygen is present, or can be reduced to lactate or thanol in the absence of of oxygen using a process known as Fermentation. The Kreb’s cycle is the process through which aerobic cellular metabolism occurs. Hans Krebs received the 1953 Nobel Prize in Medicine for his “discovery” of the citric acid cycle. This cycle involves a series of reactions involving a (1) a substrate, Oxaloacetate, that is modified in every reaction, (2) Acetyl–CoA, from which energy is extracted, (3) energy transport reactants, which collect the extracted energy, and (4) the controlling enzymes, which regulate the steps of the cycle. This cycle is ubiquitous in living organisms, single and multi-celled, both plants and animals — including humans. Organizationally, the process is often divided into 8 steps, one for each controlling enzyme, usually beginning with the combination of the Oxaloacetate substrate to the Acetyl–CoA, which is produced from either glycolysis or pyruvate oxidation. Below is a picture of the Kreb’s Cycle Glycolysis occurs within almost all living cells and is the primary source of Acetyl-CoA, which is the molecule responsible for the majority of energy output under aerobic conditions. The first phase of Glycolysis requires an input of energy in the form of ATP (adenosine triphosphate). Because the next portion of Glycolysis requires the molecule D-Glyceraldehyde-3-phosphate to continue Dihydroxyacetone phosphate is converted into D-Glyceraldehyde-3-phosphate by the enzyme Triose phosphate isomerase (Class: Isomerase) Carbohydrate metabolism begins with digestion in the small intestine where monosaccharaides are absorbed into the blood stream. Blood sugar concentrations are controlled by three hormones: insulin, glucagon, and epinephrine. If the concentration of glucose in the blood is too high, insulin is secreted by the pancreas. Insulin stimulates the transfer of glucose into the cells, especially in the liver and muscles, although other organs are also able to metabolize glucose. In the liver and muscles, most of the glucose is changed into glycogen by the process of glycogenesis (anabolism). Glycogen is stored in the liver and muscles until needed at some later time when glucose levels are low. If blood glucose levels are low, then epinephrine and glucagon hormones are secreted to stimulate the conversion of glycogen to glucose. This process is called glycogenolysis (catabolism). If glucose is needed immediately upon entering the cells to supply energy, it begins the metabolic process called glycolysis (catabolism). The end products of glycolysis are pyruvic acid and ATP. Since glycolysis releases relatively little ATP, further reactions continue to convert pyruvic acid to acetyl CoA and then citric acid in the citric acid cycle. The majority of the ATP is made from oxidations in the citric acid cycle in connection with the electron transport chain. According to the website (UCDavischemwiki) the following picture describes the electron transport chain.
I (NADH-ubiquinone oxidioreductase): An integral protein that receives electrons in the form of hydride ions from NADH and passes them on to ubiquinone
II (Succinate-ubiquinone oxidioreductase aka succinate dehydrogenase from the TCA cycle): A peripheral protein that receives electrons from succinate (an intermediate metabolite of the TCA cycle) to yield fumarate and [FADH2]. From succinate the electrons are received by [FAD] (a prosthetic group of the protein) which then become [FADH2]. The electrons are then passed off to ubiquinone.
Q (Ubiquinone/ ubiquinol): Ubiquinone (the oxidized form of the molecule) receives electrons from several different carriers; from I, II, Glycerol-3-phosphate dehydrogenase, and ETF. It is now the reduced form (ubiquinol) which passes its electron off to III.
III (Ubiquinol-cytochrome c oxidioreductase): An integral protein that receives electrons from ubiquinol which are then passed on to Cytochrome c
IV (Cytochrome c oxidase):An integral protein that that receives electrons from Cytochrome c and transfers them to oxygen to produce water within the mitochondria matrix.
ATP Synthase: An integral protein consisting of several different subunits. This protein is directly responsible for the production of ATP via chemiosmotic phosphorylation. It uses the proton gradient created by several of the other carriers in the ETC to drive a mechanical rotor. The energy from that rotor is then used to phosphorylate ADT to ATP. (UCDavischemwiki) During strenuous muscular activity, pyruvic acid is converted into lactic acid rather that acetyl CoA. During the resting period, the lactic acid is converted back to pyruvic acid. The pyruvic acid in turn is converted back to glucose by the process called gluconeogenesis (anabolism). If the glucose is not needed at that moment, it is converted into glycogen by glycogenesis. You can remember those terms if you think of "genesis" as the formation-beginning. Free energy describes whether a reaction will occur spontaneously. The First Law of Thermodynamics states that energy is conserved: energy can neither be created nor destroyed. The Second Law of Thermodynamics states that the work produced from a given energy can never be 100% efficient. In metabolism, reactions which are spontaneous are favorable because these run automatically and release free energy. Every reaction has an activation energy, which describes an energy barrier that is overcome every time the reaction occurs. Most of the reactions in the cell require enzymes. Enzymes are proteins to speed up reactions by grabbing onto reactants to bring them closer together. Reactants which are closer together can reach activation energy more easily. Thus, enzymes lower activation energy and speed up the reaction. ATP is the energy currency of all cells. Most of the reactions in the cell require ATP. ATP is energy rich. When the energy is used by a reaction, ATP breaks up into ADP and Pi. In order to use the energy again, ADP and Pi must be changed back into ATP. This requires energy. Non-spontaneous reactions requires energy, and this is often done by coupling this reaction with an ATP breaking down reaction, the combined free energy will be negative and therefore enables the overall reaction. Cellular respiration is a series of metabolic processes which all living cells use to produce energy in the form of ATP. In cellular respiration, the cell breaks down glucose to produce large amounts of energy in the form of ATP. Cellular respiration can take two paths: aerobic respiration or anaerobic respiration. Aerobic respiration occurs when oxygen is available, whereas anaerobic respiration occurs when oxygen is not available. The two paths of cellular respiration share the glycolysis step. Aerobic respiration has three steps: glycolysis, Krebs cycle, and oxidative phosphorylation. During glycolysis, glucose is broken down into pyruvate and produces 2 ATP. The Krebs cycle is also known as TCA cycle which contains a series of Redox reactions to convert pyruvate into CO2 and produce NADH and FADH2. During oxidative phosphorylation, NADH and FADH2 are used as substrate to generate a pH gradient on mitochondria membrane which is used to generate ATP via ATP synthase. Anaerobic respiration contains two steps: glycolysis and fermentation. Fermentation regenerates the reactants needed for glycolysis to run again. Fermentation converts pyruvate into ethanol or lactic acid, and in the process regenerates intermediates for glycolysis.

Work cited

Benson, Darik. "Electron Transport Chain." - Chemwiki. N.p., n.d. Web. 13 Apr. 2014.

You May Also Find These Documents Helpful

  • Good Essays

    4) When we ingest large molecules such as lipids, carbohydrates, and proteins, they must undergo catabolic reactions whereby enzymes split these molecules. This series of reactions is called chemical digestion. (854)…

    • 1167 Words
    • 5 Pages
    Good Essays
  • Satisfactory Essays

    Nt1310 Unit 2 Study Guide

    • 2727 Words
    • 11 Pages

    |Anabolism |Type of metabolism: biochemical reactions that synthesise large molecules from smaller molecules. This |…

    • 2727 Words
    • 11 Pages
    Satisfactory Essays
  • Satisfactory Essays

    Unit 2 Virtual Lab Report

    • 718 Words
    • 4 Pages

    Catabolic- The reaction of a chemical that occurs when a larger more complex molecule is being broken down into simpler forms while releasing energy.…

    • 718 Words
    • 4 Pages
    Satisfactory Essays
  • Good Essays

    Stage one glycolysis means the “splitting of sugar”. Glycolysis is a six carbon glucose molecule which is then broken in half, forming two three carbon molecules. The initial split requires an energy investment of two ATP molecules per glucose. Then the three carbon molecules donate high energy electrons to NAD+, the electron carrier forming NADH. Glycolysis then makes four ATP molecules when the enzymes transfer phosphate groups from fuel molecules to ADP. Glycolysis produces a net of two molecules of ATP per molecule of glucose. Then the pyruvic acid holds most of the energy of glucose and that energy is then harvested for stage two.…

    • 398 Words
    • 2 Pages
    Good Essays
  • Better Essays

    Biochemistry-Metabolism

    • 1252 Words
    • 6 Pages

    An enzyme is a protein or other substance that will bind to a substrate, or substance that…

    • 1252 Words
    • 6 Pages
    Better Essays
  • Good Essays

    Atp Energy System

    • 969 Words
    • 4 Pages

    * In Aerobic glycolysis, glucose or glycogen is broken down to pyruvic acid via glycolitic enzymes during carbohydrate metabolism. Hydrogen is released and glucose is metabolized to pyruvic acid. In the presence of oxygen, the pyruvic acid is converted into acetyl coenzyme A. (Acetyl CoA). 1 mole of glucose produce 2 moles of ATP or 1 mole of glycogen produces 3 moles of ATP.…

    • 969 Words
    • 4 Pages
    Good Essays
  • Good Essays

    Catabolism is the process that produces the energy that is needed in order to have activity in the cells. In order for this to happen cells breakdown large molecules such as carbohydrates and fats to release energy.…

    • 2915 Words
    • 7 Pages
    Good Essays
  • Good Essays

    Catabolism is an enzyme-regulated chemical reaction that releases energy. Complex organic compounds such as glucose, amino acids, glycerol and fatty acids are broken down into simpler ones. The energy of catabolic reactions is used to drive the anabolic reactions.…

    • 1649 Words
    • 7 Pages
    Good Essays
  • Powerful Essays

    Metabolism includes breaking down substances into their simpler building blocks, synthesizing complex cellular structures from simpler substances, and using nutrients and oxygen to produce ATP.…

    • 1609 Words
    • 7 Pages
    Powerful Essays
  • Powerful Essays

    BIOL 3350 Exam 1

    • 979 Words
    • 4 Pages

    Set of chemical reactions that occurs in living cells to maintain life. Catabolism is cellular respiration and anabolism is the construction of proteins.…

    • 979 Words
    • 4 Pages
    Powerful Essays
  • Good Essays

    Cell Work Sheet

    • 850 Words
    • 4 Pages

    This cycle also called the “Krebs cycle”, completes the breakdown of glucose all the way to CO2, one of the waste products off cellular respiration. The enzymes for the citric acid cycle are dissolved in the fluid within mitochondria. Glycolysis and the citric acid cycle generate a small amount of ATP directly. They generate much more ATP indirectly, via redox reactions that transfer electrons from fuel molecules to NAD+, forming NADH.…

    • 850 Words
    • 4 Pages
    Good Essays
  • Satisfactory Essays

    Biology Term Paper

    • 389 Words
    • 2 Pages

    Glycolysis occurs in the cytoplasm outside the mitochondria, it is a metabolic pathway that is the breakdown of glucose (C6) and ends with 2 pyruvate (C3) molecules. Energy is invested to activate the glucose, 2 ATP are gained, and oxidation results in NADH, which will be used later for additional ATP production. Glycolysis is divided into (1) the energy-investment step, when ATP is used; and (2) the energy-harvesting steps, when NADH and ATP are produced. A net gain of 2 ATP can be calculated by subtracting those expended during the energy-investment step from those produced during the energy-harvesting steps. During the energy-investment step, 2 ATP transfer phosphate groups into substrates, and 2 ADP + P result. The ATP has been broken down however; the phosphate groups activate the substrates, so they can undergo reactions. During the energy-harvesting steps, substrates are oxidized by the removal of hydrogen atoms, and 2 NADH result. Oxidation produces substrates with energized phosphate groups, which are used to synthesize 4 ATP. As a phosphate group is transferred to ADP, ATP results. The inputs of Glycolysis are glucose, 2 NAD+, 2 ATP, and 4 ADP+P. The outputs of Glycolysis are 2 pyruvate, 2 NADH, 2 ADP, 4 ATP that equals a net gain of 2 ATP.…

    • 389 Words
    • 2 Pages
    Satisfactory Essays
  • Better Essays

    Energy metabolism is generally defined as “The entirety of an organism 's chemical processes. These chemical processes typically take the form of complex metabolic pathways within the cell, generally categorized as being either catabolic or anabolic. In humans, the study of how energy flows and is processed in the body is termed bioenergetics, and is principally concerned with how macromolecules such as fats, proteins, and carbohydrates break down to provide usable energy for growth, repair, and physical activity.” (Gore, 2014)…

    • 1348 Words
    • 4 Pages
    Better Essays
  • Satisfactory Essays

    A catalyst is a substance that has the capacity to speed up chemical reactions without itself being…

    • 5107 Words
    • 28 Pages
    Satisfactory Essays
  • Satisfactory Essays

    Metabolism is the term used to describe the chemical reactions that take place inside a cell. Metabolic pathways are a series of these reactions catalysed by enzymes, and are carried out in small steps so that the product of one step can be the substrate of the next. The synthesis of larger molecules from this is called anabolism (e.g. constructing tissue) and the breaking down of these larger molecules is called catabolism (Dow et al., 1995, pp185-186).…

    • 333 Words
    • 2 Pages
    Satisfactory Essays