A Proposed Study on the Effects of Mechanical Pretreatment on Ulva Reticulata for the Production of Bioethanol

Topics: Biofuel, Ethanol fuel, Cebu Pages: 8 (1910 words) Published: October 13, 2012

Presented to:
The Chemical Engineering Department
College of Engineering and Architecture
Cebu Institute of Technology – University
Cebu City, Philippines

In Partial Fulfillment of the Requirements
for the Course Chemical Engineering Research 1

Macapaz, Donald G.
Lluz, Ian Rome C.
Alqueza, Mary Anne A.
Mangila, Jennifer Y.
Miparanum, Cherry Pearl A.

October 2011

In Partial Fulfillment of the requirements for the course Chemical Engineering Research 1

Approved by:

Eng’r. Coleta L. EsplanadaEng’r. Vera Marie Lanaria

Dr. ir. Jerome B. Taboada


This study proposes that mechanical pretreatment of the algae Ulva reticulata will increase the percentage of ethanol produced. Two batches of sample will be prepared. The first will serve as a control. The second will be subjected to maceration. The two batches will undergo dilute acid hydrolysis. The sugar released will then be fermented to produce ethanol. The ethanol yield of the two batches will then be compared. The result of the comparison will justify the effect of mechanical pretreatment on the bioethanol yield from Ulva reticulata.


The growing demand in energy rapidly depletes the conventional sources of fuel such as coal and petroleum. These kinds of fuels are non-renewable because it takes million of years to form. This is one of the reasons why most of the researches are inclined to find alternative fuels which are renewable.

Biofuels are referred to solid, liquid or gaseous fuels derived from organic matter. One of the examples of renewable fuels is bioethanol. The sources of this type of fuel are classified into three: the first, the second, and the third generation [1].

First generation biofuel [2] are made from edible crops such as corn, sugar, starch, and vegetable oil. Second generation biofuel [2] is any biofuel from inedible biomass such as perennial grasses and agricultural wastes. Compared with first generation biofuel, second generation biofuel holds greater promise because of its lack of competition with food production. However, the production of first and second generation biofuel faces several challenges because it still requires huge amount of land area for its production. A solution to this problem is using a biomass that does not require land for its production. This gave rise to the third generation biofuel which is the algal fuels.

Algae are simple organisms that live in oceans, lakes, rivers, ponds, and moist soil. A single organism of this type is called an alga.

Generally, algae are grouped into two categories [3] – microalgae and macroalgae – based on their morphology and size. As the name indicates, microalgae are microscopic photosynthetic organisms, many of which are unicellular. On the contrary, macroalgae are composed of multiple cells which organize to structures resembling roots, stems, and leaves of higher plants. Large marine algae are macroalgae which are typically called as seaweeds.

While microalgae are the most researched species when it comes to biofuels, it should be remembered that macroalgae have some advantages. Mainly because of their relatively larger sizes than microalgae, it can be harvested more easily. In addition to that, macroalgae such as seaweed are very common to the shores of the Philippines.

Using macroalgae (or seaweeds) as biofuel has the advantage of higher growth rates compared to terrestrial crops and avoids competing with the agricultural land. Moreover, seaweeds can mitigate greenhouse gases emission since CO2 from flue gas can be utilized as carbon source in algae growth. Aside from that, wastewater can be used to provide nutrients for seaweed growth [22].

One of the families...

References: 1. Nigam, Poonam Singh and Singh, Anoop (2010). Production of liquid biofuels from renewable resources.
2. Hamelinck, C. and A. Faaij (2006), Outlook for advanced biofuels, Energy Policy 34 (2006), pp. 3268-3283
Cheng, Y., Deng, S., Hennessy, K., Lin, X., Liu, Y., Wang, Y., Martinez, B., Ruan, R.,
4. John, Rojan P., Anisha, G. S., Nampoothiri, K. Madhavan, Pandey, Ashok. 2010. Micro and macroalgal biomass: A renewable source for bioethanol.
8. Zheng, Yi, Pan, Zhongli, Zhang, Ruihong (2009). Overview of biomass pretreatment for cellulosic ethanol production.
9. Riley, Cynthia. Bioethanol – Moving Into The Marketplace. Retrieved from: http://www1.eere.energy.gov/biomass/pdfs/bioethanol_marketplace.pdf. Viewed: September 29, 2011.
10. WebHostingGeeks Inc., 2008. “Introduction to Ethanol and Biodiesel.”
22. Rasmussen, M. and et. al. 2007. Primary Biomass Production from Marine Algae. University of Aarhus : National Environmental Research Institute; Memorandum for VE-net, 2007.
Continue Reading

Please join StudyMode to read the full document

You May Also Find These Documents Helpful

  • Essay on RRL for Mechanical Production of Electricity
  • Production of Bioethanol from Tomato (Solanum Lycopersicum) Essay
  • Essay on Bioethanol Production from Food Waste
  • Feasibility Study on Microalgal Biofuel Production Essay
  • effects of drought on farm production Essay
  • Organizational study of production industry Essay
  • study Essay
  • Pizza Production Case Study Essay

Become a StudyMode Member

Sign Up - It's Free