top-rated free essay

# Uncertainties, Accuracies, and Errors in Measurement

By eyesyahirah Sep 03, 2013 411 Words
UNCERTAINTIES , ACCURACIES, AND ERRORS IN MEASUREMENT
Uncertainty is the component of a reported value that characterizes the range of values within which the true value is asserted to lie. An uncertainty estimate should address error from all possible effects that is both systematic and random and, therefore, usually is the most appropriate means of expressing the accuracy of results. This is consistent with ISO guidelines. However, in many measurement situations the systematic error is not address and only random error is included in the uncertainty measurement. When only random error is included in the uncertainty estimate, it is a reflection of the precision of the measurement.

Accuracy is a measure of the magnitude of error between the result of a measurement and the true thickness of the item being measured. An accuracy statement predicts the ability of a coating thickness gage to measure the true thickness of a coating to be measured. Accuracy statements provide the performance capability across the full functional measurement range of the gage. Often the measurement range is split into two sections ranging from 0 to a fixed value and then everything greater than that fixed value (up to the gage's measurement limit). Accuracy statements frequently include a fixed portion that remains constant across the measurement range, plus a variable portion that is related to the measurement result for a particular thickness. Such accuracy statements are critical since those with no fixed value imply an exact measurement at zero. To prevent conversion errors, accuracy statements are stated in both their imperial and metric equivalents. The following figure identifies a sample accuracy statement for a DeFelsko gage. Sample Accuracy Statement for PosiTector 6000 FS Gage

ERRORS

Any measurement made with a measuring device is approximate. If you measure the same object two different times, the two measurements may not be exactly the same. The difference between two measurements is called a variation in the measurements. The total error is usually a combination of systematic error and random error. Many times results are quoted with two errors. The first error quoted is usually the random error, and the second is the systematic error. If only one error is quoted it is the combined error. It does not mean that you got the wrong answer. The error in measurement is a mathematical way to show the uncertainty in the measurement. It is the difference between the result of the mesurement and the true value of what you were measuring.

## Related Documents

• ###### Errors and Uncertainties in Measurement

...Experiment 1: Errors, Uncertainties, and Measurements Joe Mari Isabella Caringal, Rowena Chiang, Khrista Maria Evangelista, Berthrand Martin Fajardo Department of Biological Sciences College of Science, University of Santo Tomas España, Manila, Philippines Abstract All measurements contain a certain degree of error. These err...

• ###### Experiment 1 Errors, Uncertainties and Measurements

...Experiment 1: Errors, Uncertainties and Measurements Laboratory Report Kendrick Don Reyes, Myrr Kea Rostrata, Josemarie Emmanuel Roxas, Lindley Susi, Jessica Tabuzo Department of Biological Sciences College of Science, University of Santo Tomas España, Manila Philipines Abstract In this experiment, different measurin...

• ###### Errors, Uncertainties and Measurements Laboratory Report

...Experiment 1: Errors, Uncertainties and Measurements Laboratory Report Abstract The success of an experiment greatly depends on how the group is able to execute it and how precise and accurate their results are. In this matter, errors and uncertainties in measurements are of great factor. In this experiment, the group was able to classif...

• ###### Experiment 1: Errors, Uncertainties, and Measurements

...Abstract Measurements are all subject to error which leads to the uncertainty of the result. Errors may come from systematic errors (deterministic error) or random error (not deterministic error). In this experiment, the group measured the diameter of sphere using different kinds of measuring devices (foot rule, vernier caliper, and micrometer ...

• ###### Expt. 1 Errors, Uncertainties and Measurements

...Experiment 1: Errors, Uncertainties, and Measurements Laboratory Report Margarita Andrea S. de Guzman, Celine Mae H. Duran, Celina Angeline P. Garcia, Anna Patricia V. Gerong Department of Math and Physics College of Science, University of Santo Tomas España, Manila Abstract Measurements, defined as a comparison with a standar...

• ###### Errors, Uncertainties and Measurements

...Abstract Measurements are subject to errors which can sometimes deviate from the true value of an object. The experiment determined the %error (g/cm3) for density and different measuring data of a sphere through various measuring devices. It also aims to determine the deviation data of the sphere. Results and Discussion Table 1. Diame...

• ###### Measurement and Uncertainty

...Measurement and Uncertainty When recording data, each entry should be given a corresponding estimated error, or uncertainty. The uncertainty gives the reader an idea of the precision and accuracy of your measurements. Use the following method for finding the uncertainty associated with any measuring device used in lab. First, find the least co...

• ###### Physics Experiment 1 Errors Uncertainties and Measurement

...Experiment 1: Errors, Uncertainties and Measurements Laboratory Report Department of Math and Physics College of Science, University of Santo Tomas Abstract With the use of the ruler, vernier caliper, micrometer caliper and electronic gram scale, the group was able to acquire different sets of measurements by measuring the sphere o...